math: digits function; SqrtTau; extra spaces; re writed doc's to correct form; test for factorial
parent
4ed67fbe7e
commit
cd4fe63355
|
@ -13,6 +13,7 @@ const (
|
||||||
Sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974
|
Sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974
|
||||||
SqrtE = 1.64872127070012814684865078781416357165377610071014801157507931
|
SqrtE = 1.64872127070012814684865078781416357165377610071014801157507931
|
||||||
SqrtPi = 1.77245385090551602729816748334114518279754945612238712821380779
|
SqrtPi = 1.77245385090551602729816748334114518279754945612238712821380779
|
||||||
|
SqrtTau = 2.50662827463100050241576528481104525300698674060993831662992357
|
||||||
SqrtPhi = 1.27201964951406896425242246173749149171560804184009624861664038
|
SqrtPhi = 1.27201964951406896425242246173749149171560804184009624861664038
|
||||||
|
|
||||||
Ln2 = 0.693147180559945309417232121458176568075500134360255254120680009
|
Ln2 = 0.693147180559945309417232121458176568075500134360255254120680009
|
||||||
|
@ -29,67 +30,82 @@ pub fn abs(a f64) f64 {
|
||||||
return a
|
return a
|
||||||
}
|
}
|
||||||
|
|
||||||
// Inverse cosine.
|
// acos calculates inversed cosine (arccosine).
|
||||||
pub fn acos(a f64) f64 {
|
pub fn acos(a f64) f64 {
|
||||||
return C.acos(a)
|
return C.acos(a)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Inverse sine.
|
// asin calculates inversed sine (arcsine).
|
||||||
pub fn asin(a f64) f64 {
|
pub fn asin(a f64) f64 {
|
||||||
return C.asin(a)
|
return C.asin(a)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Inverse tangent
|
// atan calculates inversed tangent (arctangent).
|
||||||
pub fn atan(a f64) f64 {
|
pub fn atan(a f64) f64 {
|
||||||
return C.atan(a)
|
return C.atan(a)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Inverse tangent with two arguments, returns angle between the X axis and the point.
|
// atan2 calculates inverseed tangent with two arguments, returns angle between the X axis and the point.
|
||||||
pub fn atan2(a, b f64) f64 {
|
pub fn atan2(a, b f64) f64 {
|
||||||
return C.atan2(a, b)
|
return C.atan2(a, b)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Cubic root.
|
// cbrt calculates cubic root.
|
||||||
pub fn cbrt(a f64) f64 {
|
pub fn cbrt(a f64) f64 {
|
||||||
return C.cbrt(a)
|
return C.cbrt(a)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns the nearest integer equal or higher to the provided value.
|
// ceil returns the nearest integer equal or higher to the provided value.
|
||||||
pub fn ceil(a f64) f64 {
|
pub fn ceil(a f64) f64 {
|
||||||
return C.ceil(a)
|
return C.ceil(a)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Cosine.
|
// cos calculates cosine.
|
||||||
pub fn cos(a f64) f64 {
|
pub fn cos(a f64) f64 {
|
||||||
return C.cos(a)
|
return C.cos(a)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Hyperbolic cosine.
|
// cosh calculates hyperbolic cosine.
|
||||||
pub fn cosh(a f64) f64 {
|
pub fn cosh(a f64) f64 {
|
||||||
return C.cosh(a)
|
return C.cosh(a)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns euler number (e) raised to the provided power.
|
// exp calculates exponement of the number (math.pow(math.E, a)).
|
||||||
pub fn exp(a f64) f64 {
|
pub fn exp(a f64) f64 {
|
||||||
return C.exp(a)
|
return C.exp(a)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns the base-2 exponential function of x.
|
// digits returns an array of the digits of n in the given base.
|
||||||
|
pub fn digits(n, base int) []int {
|
||||||
|
mut sign := 1
|
||||||
|
if n < 0 {
|
||||||
|
sign = -1
|
||||||
|
n = -n
|
||||||
|
}
|
||||||
|
mut res := []int
|
||||||
|
for n != 0 {
|
||||||
|
res << (n % base) * sign
|
||||||
|
n /= base
|
||||||
|
}
|
||||||
|
return res
|
||||||
|
}
|
||||||
|
|
||||||
|
// exp2 returns the base-2 exponential function of a (math.pow(2, a)).
|
||||||
pub fn exp2(a f64) f64 {
|
pub fn exp2(a f64) f64 {
|
||||||
return C.exp2(a)
|
return C.exp2(a)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns the nearest integer equal or lower of the provided value.
|
// floor returns the nearest integer equal or lower of the provided value.
|
||||||
pub fn floor(a f64) f64 {
|
pub fn floor(a f64) f64 {
|
||||||
return C.floor(a)
|
return C.floor(a)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns the floating-point remainder of number / denom (rounded towards zero):
|
// fmod returns the floating-point remainder of number / denom (rounded towards zero):
|
||||||
pub fn fmod(a, b f64) f64 {
|
pub fn fmod(a, b f64) f64 {
|
||||||
return C.fmod(a, b)
|
return C.fmod(a, b)
|
||||||
}
|
}
|
||||||
|
|
||||||
// gcd calculates greatest common (positive) divisor (or zero if x and y are both zero).
|
// gcd calculates greatest common (positive) divisor (or zero if a and b are both zero).
|
||||||
pub fn gcd(a, b int) int {
|
pub fn gcd(a, b int) int {
|
||||||
if a < 0 {
|
if a < 0 {
|
||||||
a = -a
|
a = -a
|
||||||
|
@ -119,27 +135,27 @@ pub fn lcm(a, b int) int {
|
||||||
return res
|
return res
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns natural (base e) logarithm of the provided value.
|
// log calculates natural (base e) logarithm of the provided value.
|
||||||
pub fn log(a f64) f64 {
|
pub fn log(a f64) f64 {
|
||||||
return C.log(a)
|
return C.log(a)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns base 2 logarithm of the provided value.
|
// log2 calculates base-2 logarithm of the provided value.
|
||||||
pub fn log2(a f64) f64 {
|
pub fn log2(a f64) f64 {
|
||||||
return C.log(a) / C.log(2)
|
return C.log(a) / C.log(2)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns the common (base-10) logarithm of x.
|
// log10 calculates the common (base-10) logarithm of the provided value.
|
||||||
pub fn log10(a f64) f64 {
|
pub fn log10(a f64) f64 {
|
||||||
return C.log10(a)
|
return C.log10(a)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns base N logarithm of the provided value.
|
// log_n calculates base-N logarithm of the provided value.
|
||||||
pub fn log_n(a, b f64) f64 {
|
pub fn log_n(a, b f64) f64 {
|
||||||
return C.log(a) / C.log(b)
|
return C.log(a) / C.log(b)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns the maximum value of the two provided.
|
// max returns the maximum value of the two provided.
|
||||||
pub fn max(a, b f64) f64 {
|
pub fn max(a, b f64) f64 {
|
||||||
if a > b {
|
if a > b {
|
||||||
return a
|
return a
|
||||||
|
@ -147,7 +163,7 @@ pub fn max(a, b f64) f64 {
|
||||||
return b
|
return b
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns the minimum value of all the values provided.
|
// min returns the minimum value of all the values provided.
|
||||||
pub fn min(a, b f64) f64 {
|
pub fn min(a, b f64) f64 {
|
||||||
if a < b {
|
if a < b {
|
||||||
return a
|
return a
|
||||||
|
@ -155,57 +171,57 @@ pub fn min(a, b f64) f64 {
|
||||||
return b
|
return b
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns base raised to the provided power.
|
// pow returns base raised to the provided power.
|
||||||
pub fn pow(a, b f64) f64 {
|
pub fn pow(a, b f64) f64 {
|
||||||
return C.pow(a, b)
|
return C.pow(a, b)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Radians conversion.
|
// radians convert from radians to degrees.
|
||||||
pub fn radians(degrees f64) f64 {
|
pub fn radians(degrees f64) f64 {
|
||||||
return degrees * (Pi / 180.0)
|
return degrees * (Pi / 180.0)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Degrees conversion.
|
// degrees convert from degrees to radians.
|
||||||
pub fn degrees(radians f64) f64 {
|
pub fn degrees(radians f64) f64 {
|
||||||
return radians * (180.0 / Pi)
|
return radians * (180.0 / Pi)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns the integer nearest to the provided value.
|
// round returns the integer nearest to the provided value.
|
||||||
pub fn round(f f64) f64 {
|
pub fn round(f f64) f64 {
|
||||||
return C.round(f)
|
return C.round(f)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Sine.
|
// sin calculates sine.
|
||||||
pub fn sin(a f64) f64 {
|
pub fn sin(a f64) f64 {
|
||||||
return C.sin(a)
|
return C.sin(a)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Hyperbolic sine.
|
// sinh calculates hyperbolic sine.
|
||||||
pub fn sinh(a f64) f64 {
|
pub fn sinh(a f64) f64 {
|
||||||
return C.sinh(a)
|
return C.sinh(a)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns square of the provided value.
|
// sqrt calculates square of the provided value.
|
||||||
pub fn sqrt(a f64) f64 {
|
pub fn sqrt(a f64) f64 {
|
||||||
return C.sqrt(a)
|
return C.sqrt(a)
|
||||||
}
|
}
|
||||||
// Tangent.
|
// tan calculates tangent.
|
||||||
pub fn tan(a f64) f64 {
|
pub fn tan(a f64) f64 {
|
||||||
return C.tan(a)
|
return C.tan(a)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Hyperbolic tangent.
|
// tanh calculates hyperbolic tangent.
|
||||||
pub fn tanh(a f64) f64 {
|
pub fn tanh(a f64) f64 {
|
||||||
return C.tanh(a)
|
return C.tanh(a)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Rounds a toward zero, returning the nearest integral value that is not
|
// trunc rounds a toward zero, returning the nearest integral value that is not
|
||||||
// larger in magnitude than a.
|
// larger in magnitude than a.
|
||||||
pub fn trunc(a f64) f64 {
|
pub fn trunc(a f64) f64 {
|
||||||
return C.trunc(a)
|
return C.trunc(a)
|
||||||
}
|
}
|
||||||
|
|
||||||
// Return the factorial of the value provided.
|
// factorial calculates the factorial of the provided value.
|
||||||
pub fn factorial(a int) i64 {
|
pub fn factorial(a int) i64 {
|
||||||
mut prod := 1
|
mut prod := 1
|
||||||
for i:= 0; i < a; i++ {
|
for i:= 0; i < a; i++ {
|
||||||
|
|
|
@ -13,3 +13,21 @@ fn test_lcm() {
|
||||||
assert math.lcm(-2, -3) == 6
|
assert math.lcm(-2, -3) == 6
|
||||||
assert math.lcm(0, 0) == 0
|
assert math.lcm(0, 0) == 0
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn test_digits() {
|
||||||
|
digits_in_10th_base := math.digits(125, 10)
|
||||||
|
assert digits_in_10th_base[0] == 5
|
||||||
|
assert digits_in_10th_base[1] == 2
|
||||||
|
assert digits_in_10th_base[2] == 1
|
||||||
|
|
||||||
|
digits_in_16th_base := math.digits(15, 16)
|
||||||
|
assert digits_in_16th_base[0] == 15
|
||||||
|
|
||||||
|
negative_digits := math.digits(-4, 2)
|
||||||
|
assert negative_digits[2] == -1
|
||||||
|
}
|
||||||
|
|
||||||
|
fn test_factorial() {
|
||||||
|
assert math.factorial(5) == 120
|
||||||
|
assert math.factorial(0) == 1
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in New Issue