math: add egcd function implementing the extended Euclidean algorithm (#11203)

pull/11208/head
Miccah 2021-08-16 03:49:50 -05:00 committed by GitHub
parent 90b052b1db
commit d235de63e2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 28 additions and 0 deletions

View File

@ -89,6 +89,21 @@ pub fn gcd(a_ i64, b_ i64) i64 {
return a return a
} }
// egcd returns (gcd(a, b), x, y) such that |a*x + b*y| = gcd(a, b)
pub fn egcd(a i64, b i64) (i64, i64, i64) {
mut old_r, mut r := a, b
mut old_s, mut s := i64(1), i64(0)
mut old_t, mut t := i64(0), i64(1)
for r != 0 {
quot := old_r / r
old_r, r = r, old_r % r
old_s, s = s, old_s - quot * s
old_t, t = t, old_t - quot * t
}
return if old_r < 0 { -old_r } else { old_r }, old_s, old_t
}
// lcm calculates least common (non-negative) multiple. // lcm calculates least common (non-negative) multiple.
pub fn lcm(a i64, b i64) i64 { pub fn lcm(a i64, b i64) i64 {
if a == 0 { if a == 0 {

View File

@ -764,3 +764,16 @@ fn test_large_tan() {
assert soclose(f1, f2, 4e-9) assert soclose(f1, f2, 4e-9)
} }
} }
fn test_egcd() {
helper := fn (a i64, b i64, expected_g i64) {
g, x, y := egcd(a, b)
assert g == expected_g
assert abs(a * x + b * y) == g
}
helper(6, 9, 3)
helper(6, -9, 3)
helper(-6, -9, 3)
helper(0, 0, 0)
}