vfmt: hot fix to allow separate `array_d_gcboehm_opt.v` (#10413)
parent
f26626117d
commit
daeeaef030
|
@ -646,270 +646,3 @@ pub fn (data voidptr) vbytes(len int) []byte {
|
|||
pub fn (data &byte) vbytes(len int) []byte {
|
||||
return unsafe { voidptr(data).vbytes(len) }
|
||||
}
|
||||
|
||||
// non-pub versions of array functions
|
||||
// that allocale new memory using `GC_MALLOC_ATOMIC()`
|
||||
// when `-gc boehm_*_opt` is used. These memory areas are not
|
||||
// scanned for pointers.
|
||||
|
||||
fn __new_array_noscan(mylen int, cap int, elm_size int) array {
|
||||
cap_ := if cap < mylen { mylen } else { cap }
|
||||
arr := array{
|
||||
element_size: elm_size
|
||||
data: vcalloc_noscan(cap_ * elm_size)
|
||||
len: mylen
|
||||
cap: cap_
|
||||
}
|
||||
return arr
|
||||
}
|
||||
|
||||
fn __new_array_with_default_noscan(mylen int, cap int, elm_size int, val voidptr) array {
|
||||
cap_ := if cap < mylen { mylen } else { cap }
|
||||
mut arr := array{
|
||||
element_size: elm_size
|
||||
data: vcalloc_noscan(cap_ * elm_size)
|
||||
len: mylen
|
||||
cap: cap_
|
||||
}
|
||||
if val != 0 {
|
||||
for i in 0 .. arr.len {
|
||||
unsafe { arr.set_unsafe(i, val) }
|
||||
}
|
||||
}
|
||||
return arr
|
||||
}
|
||||
|
||||
fn __new_array_with_array_default_noscan(mylen int, cap int, elm_size int, val array) array {
|
||||
cap_ := if cap < mylen { mylen } else { cap }
|
||||
mut arr := array{
|
||||
element_size: elm_size
|
||||
data: vcalloc_noscan(cap_ * elm_size)
|
||||
len: mylen
|
||||
cap: cap_
|
||||
}
|
||||
for i in 0 .. arr.len {
|
||||
val_clone := val.clone()
|
||||
unsafe { arr.set_unsafe(i, &val_clone) }
|
||||
}
|
||||
return arr
|
||||
}
|
||||
|
||||
// Private function, used by V (`nums := [1, 2, 3]`)
|
||||
fn new_array_from_c_array_noscan(len int, cap int, elm_size int, c_array voidptr) array {
|
||||
cap_ := if cap < len { len } else { cap }
|
||||
arr := array{
|
||||
element_size: elm_size
|
||||
data: vcalloc_noscan(cap_ * elm_size)
|
||||
len: len
|
||||
cap: cap_
|
||||
}
|
||||
// TODO Write all memory functions (like memcpy) in V
|
||||
unsafe { C.memcpy(arr.data, c_array, len * elm_size) }
|
||||
return arr
|
||||
}
|
||||
|
||||
// Private function. Doubles array capacity if needed.
|
||||
fn (mut a array) ensure_cap_noscan(required int) {
|
||||
if required <= a.cap {
|
||||
return
|
||||
}
|
||||
mut cap := if a.cap > 0 { a.cap } else { 2 }
|
||||
for required > cap {
|
||||
cap *= 2
|
||||
}
|
||||
new_size := cap * a.element_size
|
||||
new_data := vcalloc_noscan(new_size)
|
||||
if a.data != voidptr(0) {
|
||||
unsafe { C.memcpy(new_data, a.data, a.len * a.element_size) }
|
||||
// TODO: the old data may be leaked when no GC is used (ref-counting?)
|
||||
}
|
||||
a.data = new_data
|
||||
a.offset = 0
|
||||
a.cap = cap
|
||||
}
|
||||
|
||||
// repeat returns a new array with the given array elements repeated given times.
|
||||
// `cgen` will replace this with an apropriate call to `repeat_to_depth()`
|
||||
|
||||
// version of `repeat()` that handles multi dimensional arrays
|
||||
// `unsafe` to call directly because `depth` is not checked
|
||||
[unsafe]
|
||||
fn (a array) repeat_to_depth_noscan(count int, depth int) array {
|
||||
if count < 0 {
|
||||
panic('array.repeat: count is negative: $count')
|
||||
}
|
||||
mut size := count * a.len * a.element_size
|
||||
if size == 0 {
|
||||
size = a.element_size
|
||||
}
|
||||
arr := array{
|
||||
element_size: a.element_size
|
||||
data: if depth > 0 { vcalloc(size) } else { vcalloc_noscan(size) }
|
||||
len: count * a.len
|
||||
cap: count * a.len
|
||||
}
|
||||
if a.len > 0 {
|
||||
for i in 0 .. count {
|
||||
if depth > 0 {
|
||||
ary_clone := unsafe { a.clone_to_depth_noscan(depth) }
|
||||
unsafe { C.memcpy(arr.get_unsafe(i * a.len), &byte(ary_clone.data), a.len * a.element_size) }
|
||||
} else {
|
||||
unsafe { C.memcpy(arr.get_unsafe(i * a.len), &byte(a.data), a.len * a.element_size) }
|
||||
}
|
||||
}
|
||||
}
|
||||
return arr
|
||||
}
|
||||
|
||||
// insert inserts a value in the array at index `i`
|
||||
fn (mut a array) insert_noscan(i int, val voidptr) {
|
||||
$if !no_bounds_checking ? {
|
||||
if i < 0 || i > a.len {
|
||||
panic('array.insert: index out of range (i == $i, a.len == $a.len)')
|
||||
}
|
||||
}
|
||||
a.ensure_cap_noscan(a.len + 1)
|
||||
unsafe {
|
||||
C.memmove(a.get_unsafe(i + 1), a.get_unsafe(i), (a.len - i) * a.element_size)
|
||||
a.set_unsafe(i, val)
|
||||
}
|
||||
a.len++
|
||||
}
|
||||
|
||||
// insert_many inserts many values into the array from index `i`.
|
||||
[unsafe]
|
||||
fn (mut a array) insert_many_noscan(i int, val voidptr, size int) {
|
||||
$if !no_bounds_checking ? {
|
||||
if i < 0 || i > a.len {
|
||||
panic('array.insert_many: index out of range (i == $i, a.len == $a.len)')
|
||||
}
|
||||
}
|
||||
a.ensure_cap_noscan(a.len + size)
|
||||
elem_size := a.element_size
|
||||
unsafe {
|
||||
iptr := a.get_unsafe(i)
|
||||
C.memmove(a.get_unsafe(i + size), iptr, (a.len - i) * elem_size)
|
||||
C.memcpy(iptr, val, size * elem_size)
|
||||
}
|
||||
a.len += size
|
||||
}
|
||||
|
||||
// prepend prepends one value to the array.
|
||||
fn (mut a array) prepend_noscan(val voidptr) {
|
||||
a.insert_noscan(0, val)
|
||||
}
|
||||
|
||||
// prepend_many prepends another array to this array.
|
||||
[unsafe]
|
||||
fn (mut a array) prepend_many_noscan(val voidptr, size int) {
|
||||
unsafe { a.insert_many_noscan(0, val, size) }
|
||||
}
|
||||
|
||||
// pop returns the last element of the array, and removes it.
|
||||
fn (mut a array) pop_noscan() voidptr {
|
||||
// in a sense, this is the opposite of `a << x`
|
||||
$if !no_bounds_checking ? {
|
||||
if a.len == 0 {
|
||||
panic('array.pop: array is empty')
|
||||
}
|
||||
}
|
||||
new_len := a.len - 1
|
||||
last_elem := unsafe { &byte(a.data) + new_len * a.element_size }
|
||||
a.len = new_len
|
||||
// NB: a.cap is not changed here *on purpose*, so that
|
||||
// further << ops on that array will be more efficient.
|
||||
return unsafe { memdup_noscan(last_elem, a.element_size) }
|
||||
}
|
||||
|
||||
// `clone_static_to_depth_noscan()` returns an independent copy of a given array.
|
||||
// Unlike `clone_to_depth_noscan()` it has a value receiver and is used internally
|
||||
// for slice-clone expressions like `a[2..4].clone()` and in -autofree generated code.
|
||||
fn (a array) clone_static_to_depth_noscan(depth int) array {
|
||||
return unsafe { a.clone_to_depth_noscan(depth) }
|
||||
}
|
||||
|
||||
// recursively clone given array - `unsafe` when called directly because depth is not checked
|
||||
[unsafe]
|
||||
fn (a &array) clone_to_depth_noscan(depth int) array {
|
||||
mut size := a.cap * a.element_size
|
||||
if size == 0 {
|
||||
size++
|
||||
}
|
||||
mut arr := array{
|
||||
element_size: a.element_size
|
||||
data: if depth == 0 { vcalloc_noscan(size) } else { vcalloc(size) }
|
||||
len: a.len
|
||||
cap: a.cap
|
||||
}
|
||||
// Recursively clone-generated elements if array element is array type
|
||||
if depth > 0 {
|
||||
for i in 0 .. a.len {
|
||||
ar := array{}
|
||||
unsafe { C.memcpy(&ar, a.get_unsafe(i), int(sizeof(array))) }
|
||||
ar_clone := unsafe { ar.clone_to_depth_noscan(depth - 1) }
|
||||
unsafe { arr.set_unsafe(i, &ar_clone) }
|
||||
}
|
||||
return arr
|
||||
} else {
|
||||
if !isnil(a.data) {
|
||||
unsafe { C.memcpy(&byte(arr.data), a.data, a.cap * a.element_size) }
|
||||
}
|
||||
return arr
|
||||
}
|
||||
}
|
||||
|
||||
fn (mut a array) push_noscan(val voidptr) {
|
||||
a.ensure_cap_noscan(a.len + 1)
|
||||
unsafe { C.memmove(&byte(a.data) + a.element_size * a.len, val, a.element_size) }
|
||||
a.len++
|
||||
}
|
||||
|
||||
// push_many implements the functionality for pushing another array.
|
||||
// `val` is array.data and user facing usage is `a << [1,2,3]`
|
||||
[unsafe]
|
||||
fn (mut a3 array) push_many_noscan(val voidptr, size int) {
|
||||
if a3.data == val && !isnil(a3.data) {
|
||||
// handle `arr << arr`
|
||||
copy := a3.clone()
|
||||
a3.ensure_cap_noscan(a3.len + size)
|
||||
unsafe {
|
||||
// C.memcpy(a.data, copy.data, copy.element_size * copy.len)
|
||||
C.memcpy(a3.get_unsafe(a3.len), copy.data, a3.element_size * size)
|
||||
}
|
||||
} else {
|
||||
a3.ensure_cap_noscan(a3.len + size)
|
||||
if !isnil(a3.data) && !isnil(val) {
|
||||
unsafe { C.memcpy(a3.get_unsafe(a3.len), val, a3.element_size * size) }
|
||||
}
|
||||
}
|
||||
a3.len += size
|
||||
}
|
||||
|
||||
// reverse returns a new array with the elements of the original array in reverse order.
|
||||
fn (a array) reverse_noscan() array {
|
||||
if a.len < 2 {
|
||||
return a
|
||||
}
|
||||
mut arr := array{
|
||||
element_size: a.element_size
|
||||
data: vcalloc_noscan(a.cap * a.element_size)
|
||||
len: a.len
|
||||
cap: a.cap
|
||||
}
|
||||
for i in 0 .. a.len {
|
||||
unsafe { arr.set_unsafe(i, a.get_unsafe(a.len - 1 - i)) }
|
||||
}
|
||||
return arr
|
||||
}
|
||||
|
||||
// grow_cap grows the array's capacity by `amount` elements.
|
||||
fn (mut a array) grow_cap_noscan(amount int) {
|
||||
a.ensure_cap_noscan(a.cap + amount)
|
||||
}
|
||||
|
||||
// grow_len ensures that an array has a.len + amount of length
|
||||
[unsafe]
|
||||
fn (mut a array) grow_len_noscan(amount int) {
|
||||
a.ensure_cap_noscan(a.len + amount)
|
||||
a.len += amount
|
||||
}
|
||||
|
|
|
@ -0,0 +1,268 @@
|
|||
// non-pub versions of array functions
|
||||
// that allocale new memory using `GC_MALLOC_ATOMIC()`
|
||||
// when `-gc boehm_*_opt` is used. These memory areas are not
|
||||
// scanned for pointers.
|
||||
|
||||
module builtin
|
||||
|
||||
fn __new_array_noscan(mylen int, cap int, elm_size int) array {
|
||||
cap_ := if cap < mylen { mylen } else { cap }
|
||||
arr := array{
|
||||
element_size: elm_size
|
||||
data: vcalloc_noscan(cap_ * elm_size)
|
||||
len: mylen
|
||||
cap: cap_
|
||||
}
|
||||
return arr
|
||||
}
|
||||
|
||||
fn __new_array_with_default_noscan(mylen int, cap int, elm_size int, val voidptr) array {
|
||||
cap_ := if cap < mylen { mylen } else { cap }
|
||||
mut arr := array{
|
||||
element_size: elm_size
|
||||
data: vcalloc_noscan(cap_ * elm_size)
|
||||
len: mylen
|
||||
cap: cap_
|
||||
}
|
||||
if val != 0 {
|
||||
for i in 0 .. arr.len {
|
||||
unsafe { arr.set_unsafe(i, val) }
|
||||
}
|
||||
}
|
||||
return arr
|
||||
}
|
||||
|
||||
fn __new_array_with_array_default_noscan(mylen int, cap int, elm_size int, val array) array {
|
||||
cap_ := if cap < mylen { mylen } else { cap }
|
||||
mut arr := array{
|
||||
element_size: elm_size
|
||||
data: vcalloc_noscan(cap_ * elm_size)
|
||||
len: mylen
|
||||
cap: cap_
|
||||
}
|
||||
for i in 0 .. arr.len {
|
||||
val_clone := val.clone()
|
||||
unsafe { arr.set_unsafe(i, &val_clone) }
|
||||
}
|
||||
return arr
|
||||
}
|
||||
|
||||
// Private function, used by V (`nums := [1, 2, 3]`)
|
||||
fn new_array_from_c_array_noscan(len int, cap int, elm_size int, c_array voidptr) array {
|
||||
cap_ := if cap < len { len } else { cap }
|
||||
arr := array{
|
||||
element_size: elm_size
|
||||
data: vcalloc_noscan(cap_ * elm_size)
|
||||
len: len
|
||||
cap: cap_
|
||||
}
|
||||
// TODO Write all memory functions (like memcpy) in V
|
||||
unsafe { C.memcpy(arr.data, c_array, len * elm_size) }
|
||||
return arr
|
||||
}
|
||||
|
||||
// Private function. Doubles array capacity if needed.
|
||||
fn (mut a array) ensure_cap_noscan(required int) {
|
||||
if required <= a.cap {
|
||||
return
|
||||
}
|
||||
mut cap := if a.cap > 0 { a.cap } else { 2 }
|
||||
for required > cap {
|
||||
cap *= 2
|
||||
}
|
||||
new_size := cap * a.element_size
|
||||
new_data := vcalloc_noscan(new_size)
|
||||
if a.data != voidptr(0) {
|
||||
unsafe { C.memcpy(new_data, a.data, a.len * a.element_size) }
|
||||
// TODO: the old data may be leaked when no GC is used (ref-counting?)
|
||||
}
|
||||
a.data = new_data
|
||||
a.offset = 0
|
||||
a.cap = cap
|
||||
}
|
||||
|
||||
// repeat returns a new array with the given array elements repeated given times.
|
||||
// `cgen` will replace this with an apropriate call to `repeat_to_depth()`
|
||||
|
||||
// version of `repeat()` that handles multi dimensional arrays
|
||||
// `unsafe` to call directly because `depth` is not checked
|
||||
[unsafe]
|
||||
fn (a array) repeat_to_depth_noscan(count int, depth int) array {
|
||||
if count < 0 {
|
||||
panic('array.repeat: count is negative: $count')
|
||||
}
|
||||
mut size := count * a.len * a.element_size
|
||||
if size == 0 {
|
||||
size = a.element_size
|
||||
}
|
||||
arr := array{
|
||||
element_size: a.element_size
|
||||
data: if depth > 0 { vcalloc(size) } else { vcalloc_noscan(size) }
|
||||
len: count * a.len
|
||||
cap: count * a.len
|
||||
}
|
||||
if a.len > 0 {
|
||||
for i in 0 .. count {
|
||||
if depth > 0 {
|
||||
ary_clone := unsafe { a.clone_to_depth_noscan(depth) }
|
||||
unsafe { C.memcpy(arr.get_unsafe(i * a.len), &byte(ary_clone.data), a.len * a.element_size) }
|
||||
} else {
|
||||
unsafe { C.memcpy(arr.get_unsafe(i * a.len), &byte(a.data), a.len * a.element_size) }
|
||||
}
|
||||
}
|
||||
}
|
||||
return arr
|
||||
}
|
||||
|
||||
// insert inserts a value in the array at index `i`
|
||||
fn (mut a array) insert_noscan(i int, val voidptr) {
|
||||
$if !no_bounds_checking ? {
|
||||
if i < 0 || i > a.len {
|
||||
panic('array.insert: index out of range (i == $i, a.len == $a.len)')
|
||||
}
|
||||
}
|
||||
a.ensure_cap_noscan(a.len + 1)
|
||||
unsafe {
|
||||
C.memmove(a.get_unsafe(i + 1), a.get_unsafe(i), (a.len - i) * a.element_size)
|
||||
a.set_unsafe(i, val)
|
||||
}
|
||||
a.len++
|
||||
}
|
||||
|
||||
// insert_many inserts many values into the array from index `i`.
|
||||
[unsafe]
|
||||
fn (mut a array) insert_many_noscan(i int, val voidptr, size int) {
|
||||
$if !no_bounds_checking ? {
|
||||
if i < 0 || i > a.len {
|
||||
panic('array.insert_many: index out of range (i == $i, a.len == $a.len)')
|
||||
}
|
||||
}
|
||||
a.ensure_cap_noscan(a.len + size)
|
||||
elem_size := a.element_size
|
||||
unsafe {
|
||||
iptr := a.get_unsafe(i)
|
||||
C.memmove(a.get_unsafe(i + size), iptr, (a.len - i) * elem_size)
|
||||
C.memcpy(iptr, val, size * elem_size)
|
||||
}
|
||||
a.len += size
|
||||
}
|
||||
|
||||
// prepend prepends one value to the array.
|
||||
fn (mut a array) prepend_noscan(val voidptr) {
|
||||
a.insert_noscan(0, val)
|
||||
}
|
||||
|
||||
// prepend_many prepends another array to this array.
|
||||
[unsafe]
|
||||
fn (mut a array) prepend_many_noscan(val voidptr, size int) {
|
||||
unsafe { a.insert_many_noscan(0, val, size) }
|
||||
}
|
||||
|
||||
// pop returns the last element of the array, and removes it.
|
||||
fn (mut a array) pop_noscan() voidptr {
|
||||
// in a sense, this is the opposite of `a << x`
|
||||
$if !no_bounds_checking ? {
|
||||
if a.len == 0 {
|
||||
panic('array.pop: array is empty')
|
||||
}
|
||||
}
|
||||
new_len := a.len - 1
|
||||
last_elem := unsafe { &byte(a.data) + new_len * a.element_size }
|
||||
a.len = new_len
|
||||
// NB: a.cap is not changed here *on purpose*, so that
|
||||
// further << ops on that array will be more efficient.
|
||||
return unsafe { memdup_noscan(last_elem, a.element_size) }
|
||||
}
|
||||
|
||||
// `clone_static_to_depth_noscan()` returns an independent copy of a given array.
|
||||
// Unlike `clone_to_depth_noscan()` it has a value receiver and is used internally
|
||||
// for slice-clone expressions like `a[2..4].clone()` and in -autofree generated code.
|
||||
fn (a array) clone_static_to_depth_noscan(depth int) array {
|
||||
return unsafe { a.clone_to_depth_noscan(depth) }
|
||||
}
|
||||
|
||||
// recursively clone given array - `unsafe` when called directly because depth is not checked
|
||||
[unsafe]
|
||||
fn (a &array) clone_to_depth_noscan(depth int) array {
|
||||
mut size := a.cap * a.element_size
|
||||
if size == 0 {
|
||||
size++
|
||||
}
|
||||
mut arr := array{
|
||||
element_size: a.element_size
|
||||
data: if depth == 0 { vcalloc_noscan(size) } else { vcalloc(size) }
|
||||
len: a.len
|
||||
cap: a.cap
|
||||
}
|
||||
// Recursively clone-generated elements if array element is array type
|
||||
if depth > 0 {
|
||||
for i in 0 .. a.len {
|
||||
ar := array{}
|
||||
unsafe { C.memcpy(&ar, a.get_unsafe(i), int(sizeof(array))) }
|
||||
ar_clone := unsafe { ar.clone_to_depth_noscan(depth - 1) }
|
||||
unsafe { arr.set_unsafe(i, &ar_clone) }
|
||||
}
|
||||
return arr
|
||||
} else {
|
||||
if !isnil(a.data) {
|
||||
unsafe { C.memcpy(&byte(arr.data), a.data, a.cap * a.element_size) }
|
||||
}
|
||||
return arr
|
||||
}
|
||||
}
|
||||
|
||||
fn (mut a array) push_noscan(val voidptr) {
|
||||
a.ensure_cap_noscan(a.len + 1)
|
||||
unsafe { C.memmove(&byte(a.data) + a.element_size * a.len, val, a.element_size) }
|
||||
a.len++
|
||||
}
|
||||
|
||||
// push_many implements the functionality for pushing another array.
|
||||
// `val` is array.data and user facing usage is `a << [1,2,3]`
|
||||
[unsafe]
|
||||
fn (mut a3 array) push_many_noscan(val voidptr, size int) {
|
||||
if a3.data == val && !isnil(a3.data) {
|
||||
// handle `arr << arr`
|
||||
copy := a3.clone()
|
||||
a3.ensure_cap_noscan(a3.len + size)
|
||||
unsafe {
|
||||
// C.memcpy(a.data, copy.data, copy.element_size * copy.len)
|
||||
C.memcpy(a3.get_unsafe(a3.len), copy.data, a3.element_size * size)
|
||||
}
|
||||
} else {
|
||||
a3.ensure_cap_noscan(a3.len + size)
|
||||
if !isnil(a3.data) && !isnil(val) {
|
||||
unsafe { C.memcpy(a3.get_unsafe(a3.len), val, a3.element_size * size) }
|
||||
}
|
||||
}
|
||||
a3.len += size
|
||||
}
|
||||
|
||||
// reverse returns a new array with the elements of the original array in reverse order.
|
||||
fn (a array) reverse_noscan() array {
|
||||
if a.len < 2 {
|
||||
return a
|
||||
}
|
||||
mut arr := array{
|
||||
element_size: a.element_size
|
||||
data: vcalloc_noscan(a.cap * a.element_size)
|
||||
len: a.len
|
||||
cap: a.cap
|
||||
}
|
||||
for i in 0 .. a.len {
|
||||
unsafe { arr.set_unsafe(i, a.get_unsafe(a.len - 1 - i)) }
|
||||
}
|
||||
return arr
|
||||
}
|
||||
|
||||
// grow_cap grows the array's capacity by `amount` elements.
|
||||
fn (mut a array) grow_cap_noscan(amount int) {
|
||||
a.ensure_cap_noscan(a.cap + amount)
|
||||
}
|
||||
|
||||
// grow_len ensures that an array has a.len + amount of length
|
||||
[unsafe]
|
||||
fn (mut a array) grow_len_noscan(amount int) {
|
||||
a.ensure_cap_noscan(a.len + amount)
|
||||
a.len += amount
|
||||
}
|
|
@ -875,9 +875,12 @@ pub fn (t &Table) type_to_str_using_aliases(typ Type, import_aliases map[string]
|
|||
if typ.has_flag(.variadic) {
|
||||
res = t.type_to_str_using_aliases(t.value_type(typ), import_aliases)
|
||||
} else {
|
||||
info := sym.info as Array
|
||||
elem_str := t.type_to_str_using_aliases(info.elem_type, import_aliases)
|
||||
res = '[]$elem_str'
|
||||
if sym.info is Array {
|
||||
elem_str := t.type_to_str_using_aliases(sym.info.elem_type, import_aliases)
|
||||
res = '[]$elem_str'
|
||||
} else {
|
||||
res = 'array'
|
||||
}
|
||||
}
|
||||
}
|
||||
.array_fixed {
|
||||
|
|
|
@ -353,7 +353,7 @@ fn (mut p Parser) fn_decl() ast.FnDecl {
|
|||
// we could also check if kind is .array, .array_fixed, .map instead of mod.len
|
||||
mut is_non_local := type_sym.mod.len > 0 && type_sym.mod != p.mod && type_sym.language == .v
|
||||
// check maps & arrays, must be defined in same module as the elem type
|
||||
if !is_non_local && type_sym.kind in [.array, .map] {
|
||||
if !is_non_local && !(p.builtin_mod && p.pref.is_fmt) && type_sym.kind in [.array, .map] {
|
||||
elem_type_sym := p.table.get_type_symbol(p.table.value_type(rec.typ))
|
||||
is_non_local = elem_type_sym.mod.len > 0 && elem_type_sym.mod != p.mod
|
||||
&& elem_type_sym.language == .v
|
||||
|
|
Loading…
Reference in New Issue