gg: change draw_cubic_bezier* call signatures for speed and to match *_poly (#11323)
parent
4d5521bbf7
commit
e85311c2ba
|
@ -4,8 +4,7 @@ import gg
|
||||||
import gx
|
import gx
|
||||||
|
|
||||||
const (
|
const (
|
||||||
p1_and_p2 = [f32(200.0), 200.0, 400.0, 300.0]
|
points = [f32(200.0), 200.0, 200.0, 100.0, 400.0, 100.0, 400.0, 300.0]
|
||||||
ctrl_p1_and_p2 = [f32(200.0), 100.0, 400.0, 100.0]
|
|
||||||
)
|
)
|
||||||
|
|
||||||
struct App {
|
struct App {
|
||||||
|
@ -30,6 +29,6 @@ fn main() {
|
||||||
|
|
||||||
fn frame(mut app App) {
|
fn frame(mut app App) {
|
||||||
app.gg.begin()
|
app.gg.begin()
|
||||||
app.gg.draw_cubic_bezier(p1_and_p2, ctrl_p1_and_p2, gx.blue)
|
app.gg.draw_cubic_bezier(points, gx.blue)
|
||||||
app.gg.end()
|
app.gg.end()
|
||||||
}
|
}
|
||||||
|
|
|
@ -48,13 +48,21 @@ fn main() {
|
||||||
fn frame(mut app App) {
|
fn frame(mut app App) {
|
||||||
time := app.anim.time
|
time := app.anim.time
|
||||||
|
|
||||||
ctrl_p1_x := f32(200.0) + (40 * time)
|
p1_x := f32(200.0)
|
||||||
ctrl_p2_x := f32(400.0) + (-40 * time)
|
p1_y := f32(200.0) + (10 * time)
|
||||||
|
|
||||||
p1_and_p2 := [f32(200.0), 200.0 + (10 * time), 400.0, 200.0 + (10 * time)]
|
p2_x := f32(400.0)
|
||||||
|
p2_y := f32(200.0) + (10 * time)
|
||||||
|
|
||||||
|
ctrl_p1_x := f32(200.0) + (40 * time)
|
||||||
|
ctrl_p1_y := f32(100.0)
|
||||||
|
ctrl_p2_x := f32(400.0) + (-40 * time)
|
||||||
|
ctrl_p2_y := f32(100.0)
|
||||||
|
|
||||||
|
points := [p1_x, p1_y, ctrl_p1_x, ctrl_p1_y, ctrl_p2_x, ctrl_p2_y, p2_x, p2_y]
|
||||||
|
|
||||||
app.gg.begin()
|
app.gg.begin()
|
||||||
app.gg.draw_cubic_bezier(p1_and_p2, [ctrl_p1_x, 100.0, ctrl_p2_x, 100.0], gx.blue)
|
app.gg.draw_cubic_bezier(points, gx.blue)
|
||||||
app.gg.end()
|
app.gg.end()
|
||||||
app.anim.advance()
|
app.anim.advance()
|
||||||
}
|
}
|
||||||
|
|
23
vlib/gg/gg.v
23
vlib/gg/gg.v
|
@ -675,22 +675,21 @@ pub fn (ctx &Context) draw_empty_poly(points []f32, c gx.Color) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// draw_cubic_bezier draws a cubic Bézier curve, also known as a spline, from four points.
|
// draw_cubic_bezier draws a cubic Bézier curve, also known as a spline, from four points.
|
||||||
// The four points is provided as two arrays; `points` and `control_points`, which is both pairs of x and y coordinates.
|
// The four points is provided as one `points` array which contains a stream of point pairs (x and y coordinates).
|
||||||
// Thus a coordinate pair could be declared like: `points := [x1, y1, x2, y2]`.
|
// Thus a cubic Bézier could be declared as: `points := [x1, y1, control_x1, control_y1, control_x2, control_y2, x2, y2]`.
|
||||||
// Please see `draw_cubic_bezier_in_steps` to control the amount of steps (segments) used to draw the curve.
|
// Please see `draw_cubic_bezier_in_steps` to control the amount of steps (segments) used to draw the curve.
|
||||||
pub fn (ctx &Context) draw_cubic_bezier(points []f32, control_points []f32, c gx.Color) {
|
pub fn (ctx &Context) draw_cubic_bezier(points []f32, c gx.Color) {
|
||||||
ctx.draw_cubic_bezier_in_steps(points, control_points, u32(30 * ctx.scale), c)
|
ctx.draw_cubic_bezier_in_steps(points, u32(30 * ctx.scale), c)
|
||||||
}
|
}
|
||||||
|
|
||||||
// draw_cubic_bezier_in_steps draws a cubic Bézier curve, also known as a spline, from four points.
|
// draw_cubic_bezier_in_steps draws a cubic Bézier curve, also known as a spline, from four points.
|
||||||
// The smoothness of the curve can be controlled with the `steps` parameter. `steps` determines how many iterations is
|
// The smoothness of the curve can be controlled with the `steps` parameter. `steps` determines how many iterations is
|
||||||
// taken to draw the curve.
|
// taken to draw the curve.
|
||||||
// The four points is provided as two arrays; `points` and `control_points`, which is both pairs of x and y coordinates.
|
// The four points is provided as one `points` array which contains a stream of point pairs (x and y coordinates).
|
||||||
// Thus a coordinate pair could be declared like: `points := [x1, y1, x2, y2]`.
|
// Thus a cubic Bézier could be declared as: `points := [x1, y1, control_x1, control_y1, control_x2, control_y2, x2, y2]`.
|
||||||
pub fn (ctx &Context) draw_cubic_bezier_in_steps(points []f32, control_points []f32, steps u32, c gx.Color) {
|
pub fn (ctx &Context) draw_cubic_bezier_in_steps(points []f32, steps u32, c gx.Color) {
|
||||||
assert steps > 0
|
assert steps > 0
|
||||||
assert points.len == 4
|
assert points.len == 8
|
||||||
assert points.len == control_points.len
|
|
||||||
|
|
||||||
if c.a != 255 {
|
if c.a != 255 {
|
||||||
sgl.load_pipeline(ctx.timage_pip)
|
sgl.load_pipeline(ctx.timage_pip)
|
||||||
|
@ -700,10 +699,10 @@ pub fn (ctx &Context) draw_cubic_bezier_in_steps(points []f32, control_points []
|
||||||
sgl.begin_line_strip()
|
sgl.begin_line_strip()
|
||||||
|
|
||||||
p1_x, p1_y := points[0], points[1]
|
p1_x, p1_y := points[0], points[1]
|
||||||
p2_x, p2_y := points[2], points[3]
|
p2_x, p2_y := points[6], points[7]
|
||||||
|
|
||||||
ctrl_p1_x, ctrl_p1_y := control_points[0], control_points[1]
|
ctrl_p1_x, ctrl_p1_y := points[2], points[3]
|
||||||
ctrl_p2_x, ctrl_p2_y := control_points[2], control_points[3]
|
ctrl_p2_x, ctrl_p2_y := points[4], points[5]
|
||||||
|
|
||||||
// The constant 3 is actually points.len() - 1;
|
// The constant 3 is actually points.len() - 1;
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue