// Copyright (c) 2019-2022 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license that can be found in the LICENSE file. module gg import gx import sokol import sokol.sgl import math //---- pixel [inline] pub fn (ctx &Context) draw_pixel(x f32, y f32, c gx.Color) { if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_points() sgl.v2f(x * ctx.scale, y * ctx.scale) sgl.end() } // Sets pixels from an array of points [x, y, x2, y2, etc...] [direct_array_access; inline] pub fn (ctx &Context) draw_pixels(points []f32, c gx.Color) { assert points.len % 2 == 0 len := points.len / 2 if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_points() for i in 0 .. len { x, y := points[i * 2], points[i * 2 + 1] sgl.v2f(x * ctx.scale, y * ctx.scale) } sgl.end() } //---- line // Draws a line between the points provided pub fn (ctx &Context) draw_line(x f32, y f32, x2 f32, y2 f32, c gx.Color) { $if macos { if ctx.native_rendering { // Make the line more clear on hi dpi screens: draw a rectangle mut width := math.abs(x2 - x) mut height := math.abs(y2 - y) if width == 0 { width = 1 } else if height == 0 { height = 1 } ctx.draw_rect_filled(x, y, f32(width), f32(height), c) return } } if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_line_strip() sgl.v2f(x * ctx.scale, y * ctx.scale) sgl.v2f(x2 * ctx.scale, y2 * ctx.scale) sgl.end() } // Draws a line between the points provided with the PenConfig pub fn (ctx &Context) draw_line_with_config(x f32, y f32, x2 f32, y2 f32, config PenConfig) { if config.color.a != 255 { sgl.load_pipeline(ctx.timage_pip) } if config.thickness <= 0 { return } nx := x * ctx.scale ny := y * ctx.scale nx2 := x2 * ctx.scale ny2 := y2 * ctx.scale dx := nx2 - nx dy := ny2 - ny length := math.sqrtf(math.powf(x2 - x, 2) + math.powf(y2 - y, 2)) theta := f32(math.atan2(dy, dx)) sgl.push_matrix() sgl.translate(nx, ny, 0) sgl.rotate(theta, 0, 0, 1) sgl.translate(-nx, -ny, 0) if config.line_type == .solid { ctx.draw_rect_filled(x, y, length, config.thickness, config.color) } else { size := if config.line_type == .dotted { config.thickness } else { config.thickness * 3 } space := if size == 1 { 2 } else { size } mut available := length mut start_x := x for i := 0; available > 0; i++ { if i % 2 == 0 { ctx.draw_rect_filled(start_x, y, size, config.thickness, config.color) available -= size start_x += size continue } available -= space start_x += space } } sgl.pop_matrix() } //---- polyline // draw_empty_poly draws the borders of a polygon, given an array of points, and a color. // Note that the points must be given in clockwise order. pub fn (ctx &Context) draw_poly_empty(points []f32, c gx.Color) { assert points.len % 2 == 0 len := points.len / 2 assert len >= 3 if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_line_strip() for i in 0 .. len { sgl.v2f(points[2 * i] * ctx.scale, points[2 * i + 1] * ctx.scale) } sgl.v2f(points[0] * ctx.scale, points[1] * ctx.scale) sgl.end() } // draw_convex_poly draws a convex polygon, given an array of points, and a color. // Note that the points must be given in clockwise order. pub fn (ctx &Context) draw_convex_poly(points []f32, c gx.Color) { assert points.len % 2 == 0 len := points.len / 2 assert len >= 3 if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_triangle_strip() x0 := points[0] * ctx.scale y0 := points[1] * ctx.scale for i in 1 .. (len / 2 + 1) { sgl.v2f(x0, y0) sgl.v2f(points[i * 4 - 2] * ctx.scale, points[i * 4 - 1] * ctx.scale) sgl.v2f(points[i * 4] * ctx.scale, points[i * 4 + 1] * ctx.scale) } if len % 2 == 0 { sgl.v2f(points[2 * len - 2] * ctx.scale, points[2 * len - 1] * ctx.scale) } sgl.end() } //---- rectangle pub fn (ctx &Context) draw_rect_empty(x f32, y f32, w f32, h f32, c gx.Color) { if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_line_strip() sgl.v2f(x * ctx.scale, y * ctx.scale) sgl.v2f((x + w) * ctx.scale, y * ctx.scale) sgl.v2f((x + w) * ctx.scale, (y + h) * ctx.scale) sgl.v2f(x * ctx.scale, (y + h) * ctx.scale) sgl.v2f(x * ctx.scale, (y - 1) * ctx.scale) sgl.end() } pub fn (ctx &Context) draw_rect_filled(x f32, y f32, w f32, h f32, c gx.Color) { $if macos { if ctx.native_rendering { C.darwin_draw_rect(x, ctx.height - (y + h), w, h, c) return } } if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_quads() sgl.v2f(x * ctx.scale, y * ctx.scale) sgl.v2f((x + w) * ctx.scale, y * ctx.scale) sgl.v2f((x + w) * ctx.scale, (y + h) * ctx.scale) sgl.v2f(x * ctx.scale, (y + h) * ctx.scale) sgl.end() } // draw_rounded_rect_empty draws the outline of a rounded rectangle pub fn (ctx &Context) draw_rounded_rect_empty(x f32, y f32, w f32, h f32, radius f32, c gx.Color) { mut theta := f32(0) mut xx := f32(0) mut yy := f32(0) r := radius * ctx.scale nx := x * ctx.scale ny := y * ctx.scale width := w * ctx.scale height := h * ctx.scale segments := 2 * math.pi * r segdiv := segments / 4 rb := 0 lb := int(rb + segdiv) lt := int(lb + segdiv) rt := int(lt + segdiv) sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_line_strip() // left top lx := nx + r ly := ny + r theta_coeff := 2 * f32(math.pi) / segments for i in lt .. rt { theta = theta_coeff * f32(i) xx = r * math.cosf(theta) yy = r * math.sinf(theta) sgl.v2f(xx + lx, yy + ly) } // right top mut rx := nx + width - r mut ry := ny + r for i in rt .. int(segments) { theta = theta_coeff * f32(i) xx = r * math.cosf(theta) yy = r * math.sinf(theta) sgl.v2f(xx + rx, yy + ry) } // right bottom mut rbx := rx mut rby := ny + height - r for i in rb .. lb { theta = theta_coeff * f32(i) xx = r * math.cosf(theta) yy = r * math.sinf(theta) sgl.v2f(xx + rbx, yy + rby) } // left bottom mut lbx := lx mut lby := ny + height - r for i in lb .. lt { theta = theta_coeff * f32(i) xx = r * math.cosf(theta) yy = r * math.sinf(theta) sgl.v2f(xx + lbx, yy + lby) } sgl.v2f(lx + xx, ly) sgl.end() } // draw_rounded_rect_filled draws a filled rounded rectangle pub fn (ctx &Context) draw_rounded_rect_filled(x f32, y f32, w f32, h f32, radius f32, c gx.Color) { sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_triangle_strip() mut theta := f32(0) mut xx := f32(0) mut yy := f32(0) r := radius * ctx.scale nx := x * ctx.scale ny := y * ctx.scale width := w * ctx.scale height := h * ctx.scale segments := 2 * math.pi * r segdiv := segments / 4 rb := 0 lb := int(rb + segdiv) lt := int(lb + segdiv) rt := int(lt + segdiv) // left top lx := nx + r ly := ny + r for i in lt .. rt { theta = 2 * f32(math.pi) * f32(i) / segments xx = r * math.cosf(theta) yy = r * math.sinf(theta) sgl.v2f(xx + lx, yy + ly) sgl.v2f(lx, ly) } // right top mut rx := nx + width - r mut ry := ny + r for i in rt .. int(segments) { theta = 2 * f32(math.pi) * f32(i) / segments xx = r * math.cosf(theta) yy = r * math.sinf(theta) sgl.v2f(xx + rx, yy + ry) sgl.v2f(rx, ry) } // right bottom mut rbx := rx mut rby := ny + height - r for i in rb .. lb { theta = 2 * f32(math.pi) * f32(i) / segments xx = r * math.cosf(theta) yy = r * math.sinf(theta) sgl.v2f(xx + rbx, yy + rby) sgl.v2f(rbx, rby) } // left bottom mut lbx := lx mut lby := ny + height - r for i in lb .. lt { theta = 2 * f32(math.pi) * f32(i) / segments xx = r * math.cosf(theta) yy = r * math.sinf(theta) sgl.v2f(xx + lbx, yy + lby) sgl.v2f(lbx, lby) } sgl.v2f(lx + xx, ly) sgl.v2f(lx, ly) sgl.end() sgl.begin_quads() sgl.v2f(lx, ly) sgl.v2f(rx, ry) sgl.v2f(rbx, rby) sgl.v2f(lbx, lby) sgl.end() } //---- triangle pub fn (ctx &Context) draw_triangle_empty(x f32, y f32, x2 f32, y2 f32, x3 f32, y3 f32, c gx.Color) { if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_line_strip() sgl.v2f(x * ctx.scale, y * ctx.scale) sgl.v2f(x2 * ctx.scale, y2 * ctx.scale) sgl.v2f(x3 * ctx.scale, y3 * ctx.scale) sgl.v2f(x * ctx.scale, y * ctx.scale) sgl.end() } pub fn (ctx &Context) draw_triangle_filled(x f32, y f32, x2 f32, y2 f32, x3 f32, y3 f32, c gx.Color) { if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_triangles() sgl.v2f(x * ctx.scale, y * ctx.scale) sgl.v2f(x2 * ctx.scale, y2 * ctx.scale) sgl.v2f(x3 * ctx.scale, y3 * ctx.scale) sgl.end() } //---- square [inline] pub fn (ctx &Context) draw_square_empty(x f32, y f32, s f32, c gx.Color) { ctx.draw_rect_empty(x, y, s, s, c) } [inline] pub fn (ctx &Context) draw_square_filled(x f32, y f32, s f32, c gx.Color) { ctx.draw_rect_filled(x, y, s, s, c) } //---- circle // The table here is derived by looking at the result of vlib/gg/testdata/tweak_circles.vv // and then choosing the most circle-ish drawing with the minimum number of segments. const small_circle_segments = [0, 2, 4, 6, 6, 8, 8, 13, 10, 18, 12, 12, 10, 13, 16, 15, 16]! [direct_array_access] fn radius_to_segments(r f32) int { if r < 30.0 { ir := int(math.ceil(r)) if ir > 0 && ir < gg.small_circle_segments.len { return gg.small_circle_segments[ir] } return ir } return int(math.ceil(2 * math.pi * r / 8)) } // draw_circle_empty draws an empty circle pub fn (ctx &Context) draw_circle_empty(x f32, y f32, radius f32, c gx.Color) { if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } nx := x * ctx.scale ny := y * ctx.scale nr := radius * ctx.scale mut theta := f32(0) mut xx := f32(0) mut yy := f32(0) segments := radius_to_segments(radius) sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_line_strip() for i := 0; i < segments + 1; i++ { theta = 2.0 * f32(math.pi) * f32(i) / f32(segments) xx = nr * math.cosf(theta) yy = nr * math.sinf(theta) sgl.v2f(xx + nx, yy + ny) } sgl.end() } // draw_circle_filled draws a filled circle pub fn (ctx &Context) draw_circle_filled(x f32, y f32, radius f32, c gx.Color) { ctx.draw_circle_with_segments(x, y, radius, radius_to_segments(radius), c) } // draw_circle_with_segments draws a circle with a specific number of segments (affects how smooth/round the circle is) pub fn (ctx &Context) draw_circle_with_segments(x f32, y f32, radius f32, segments int, c gx.Color) { if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) nx := x * ctx.scale ny := y * ctx.scale nr := radius * ctx.scale mut theta := f32(0) mut xx := f32(0) mut yy := f32(0) sgl.begin_triangle_strip() for i := 0; i < segments + 1; i++ { theta = 2.0 * f32(math.pi) * f32(i) / f32(segments) xx = nr * math.cosf(theta) yy = nr * math.sinf(theta) sgl.v2f(xx + nx, yy + ny) sgl.v2f(nx, ny) } sgl.end() } pub fn (ctx &Context) draw_circle_line(x f32, y f32, r int, segments int, c gx.Color) { $if macos { if ctx.native_rendering { C.darwin_draw_circle(x - r + 1, ctx.height - (y + r + 3), radius, c) return } } if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) nx := x * ctx.scale ny := y * ctx.scale nr := r * ctx.scale mut theta := f32(0) mut xx := f32(0) mut yy := f32(0) sgl.begin_line_strip() for i := 0; i < segments + 1; i++ { theta = 2.0 * f32(math.pi) * f32(i) / f32(segments) xx = nr * math.cosf(theta) yy = nr * math.sinf(theta) sgl.v2f(xx + nx, yy + ny) } sgl.end() } //---- slice // draw_slice_empty draws the outline of a circle slice/pie pub fn (ctx &Context) draw_slice_empty(x f32, y f32, outer_radius f32, start_angle f32, end_angle f32, segments int, c gx.Color) { if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) theta := f32(end_angle / f32(segments)) tan_factor := math.tanf(theta) rad_factor := math.cosf(theta) nx := x * ctx.scale ny := y * ctx.scale mut xx := outer_radius * math.cosf(start_angle) mut yy := outer_radius * math.sinf(start_angle) sgl.begin_line_strip() sgl.v2f(nx, ny) for i := 0; i < segments + 1; i++ { sgl.v2f(xx + nx, yy + ny) tx := -yy ty := xx xx += tx * tan_factor yy += ty * tan_factor xx *= rad_factor yy *= rad_factor } sgl.v2f(nx, ny) sgl.end() } // draw_slice_filled draws a filled circle slice/pie pub fn (ctx &Context) draw_slice_filled(x f32, y f32, radius f32, start_angle f32, end_angle f32, segments int, c gx.Color) { if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) nx := x * ctx.scale ny := y * ctx.scale theta := f32(end_angle / f32(segments)) tan_factor := math.tanf(theta) rad_factor := math.cosf(theta) mut xx := radius * math.cosf(start_angle) mut yy := radius * math.sinf(start_angle) sgl.begin_triangle_strip() for i := 0; i < segments + 1; i++ { sgl.v2f(xx + nx, yy + ny) sgl.v2f(nx, ny) tx := -yy ty := xx xx += tx * tan_factor yy += ty * tan_factor xx *= rad_factor yy *= rad_factor } sgl.end() } //---- arc // draw_arc_empty draws the outline of an arc pub fn (ctx &Context) draw_arc_empty(x f32, y f32, inner_radius f32, thickness f32, start_angle f32, end_angle f32, segments int, c gx.Color) { if start_angle == end_angle || inner_radius <= 0.0 { return } mut a1 := start_angle mut a2 := end_angle if a2 < a1 { a1, a2 = a2, a1 } if inner_radius <= 0.0 { ctx.draw_slice_empty(x, y, int(thickness), a1, a2, segments, c) return } outer_radius := inner_radius + thickness mut step_length := (a2 - a1) / f32(segments) mut angle := a1 sgl.begin_line_strip() sgl.c4b(c.r, c.g, c.b, c.a) // Outer circle for _ in 0 .. segments { msa := f32(math.sin(angle)) mca := f32(math.cos(angle)) ms := f32(math.sin(angle + step_length)) mc := f32(math.cos(angle + step_length)) sgl.v2f(x + msa * outer_radius, y + mca * outer_radius) sgl.v2f(x + ms * outer_radius, y + mc * outer_radius) angle += step_length } // Inner circle for _ in 0 .. segments { msa := f32(math.sin(angle)) mca := f32(math.cos(angle)) msb := f32(math.sin(angle - step_length)) mcb := f32(math.cos(angle - step_length)) sgl.v2f(x + msa * inner_radius, y + mca * inner_radius) sgl.v2f(x + msb * inner_radius, y + mcb * inner_radius) angle -= step_length } // Closing end msa := f32(math.sin(angle)) mca := f32(math.cos(angle)) sgl.v2f(x + msa * inner_radius, y + mca * inner_radius) sgl.v2f(x + msa * outer_radius, y + mca * outer_radius) sgl.end() } // draw_arc_filled draws a filled arc pub fn (ctx &Context) draw_arc_filled(x f32, y f32, inner_radius f32, thickness f32, start_angle f32, end_angle f32, segments int, c gx.Color) { if start_angle == end_angle || inner_radius <= 0.0 { return } mut a1 := start_angle mut a2 := end_angle if a2 < a1 { a1, a2 = a2, a1 } if inner_radius <= 0.0 { ctx.draw_slice_filled(x, y, int(thickness), a1, a2, segments, c) } outer_radius := inner_radius + thickness mut step_length := (a2 - a1) / f32(segments) mut angle := a1 sgl.begin_quads() sgl.c4b(c.r, c.g, c.b, c.a) for _ in 0 .. segments { msa := f32(math.sin(angle)) mca := f32(math.cos(angle)) sgl.v2f(x + msa * inner_radius, y + mca * inner_radius) sgl.v2f(x + msa * outer_radius, y + mca * outer_radius) ms := f32(math.sin(angle + step_length)) mc := f32(math.cos(angle + step_length)) sgl.v2f(x + ms * outer_radius, y + mc * outer_radius) sgl.v2f(x + ms * inner_radius, y + mc * inner_radius) angle += step_length } sgl.end() } //---- ellipse // draw_ellipse_empty draws the outline of an ellipse, with a center at x,y pub fn (ctx &Context) draw_ellipse_empty(x f32, y f32, rw f32, rh f32, c gx.Color) { if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_line_strip() for i := 0; i < 360; i += 10 { sgl.v2f(x + math.sinf(f32(math.radians(i))) * rw, y + math.cosf(f32(math.radians(i))) * rh) sgl.v2f(x + math.sinf(f32(math.radians(i + 10))) * rw, y + math.cosf(f32(math.radians(i + 10))) * rh) } sgl.end() } // draw_ellipse_filled - draws an opaque elipse, with a center at x,y , filled with the color `c` pub fn (ctx &Context) draw_ellipse_filled(x f32, y f32, rw f32, rh f32, c gx.Color) { if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_triangle_strip() for i := 0; i < 360; i += 10 { sgl.v2f(x, y) sgl.v2f(x + math.sinf(f32(math.radians(i))) * rw, y + math.cosf(f32(math.radians(i))) * rh) sgl.v2f(x + math.sinf(f32(math.radians(i + 10))) * rw, y + math.cosf(f32(math.radians(i + 10))) * rh) } sgl.end() } //---- bezier // draw_cubic_bezier draws a cubic Bézier curve, also known as a spline, from four points. // The four points is provided as one `points` array which contains a stream of point pairs (x and y coordinates). // Thus a cubic Bézier could be declared as: `points := [x1, y1, control_x1, control_y1, control_x2, control_y2, x2, y2]`. // Please see `draw_cubic_bezier_in_steps` to control the amount of steps (segments) used to draw the curve. pub fn (ctx &Context) draw_cubic_bezier(points []f32, c gx.Color) { ctx.draw_cubic_bezier_in_steps(points, u32(30 * ctx.scale), c) } // draw_cubic_bezier_in_steps draws a cubic Bézier curve, also known as a spline, from four points. // The smoothness of the curve can be controlled with the `steps` parameter. `steps` determines how many iterations is // taken to draw the curve. // The four points is provided as one `points` array which contains a stream of point pairs (x and y coordinates). // Thus a cubic Bézier could be declared as: `points := [x1, y1, control_x1, control_y1, control_x2, control_y2, x2, y2]`. pub fn (ctx &Context) draw_cubic_bezier_in_steps(points []f32, steps u32, c gx.Color) { assert steps > 0 assert points.len == 8 if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_line_strip() p1_x, p1_y := points[0], points[1] p2_x, p2_y := points[6], points[7] ctrl_p1_x, ctrl_p1_y := points[2], points[3] ctrl_p2_x, ctrl_p2_y := points[4], points[5] // The constant 3 is actually points.len() - 1; step := f32(1.0) / steps sgl.v2f(p1_x * ctx.scale, p1_y * ctx.scale) for u := f32(0.0); u <= f32(1.0); u += step { pow_2_u := u * u pow_3_u := pow_2_u * u x := pow_3_u * (p2_x + 3 * (ctrl_p1_x - ctrl_p2_x) - p1_x) + 3 * pow_2_u * (p1_x - 2 * ctrl_p1_x + ctrl_p2_x) + 3 * u * (ctrl_p1_x - p1_x) + p1_x y := pow_3_u * (p2_y + 3 * (ctrl_p1_y - ctrl_p2_y) - p1_y) + 3 * pow_2_u * (p1_y - 2 * ctrl_p1_y + ctrl_p2_y) + 3 * u * (ctrl_p1_y - p1_y) + p1_y sgl.v2f(x * ctx.scale, y * ctx.scale) } sgl.v2f(p2_x * ctx.scale, p2_y * ctx.scale) sgl.end() } //---- deprecated // Sets a pixel [deprecated: 'use draw_pixel() instead'] pub fn (ctx &Context) set_pixel(x f32, y f32, c gx.Color) { ctx.draw_pixel(x, y, c) } [deprecated: 'use draw_pixels() instead'] pub fn (ctx &Context) set_pixels(points []f32, c gx.Color) { ctx.draw_pixels(points, c) } [deprecated: 'use draw_poly_empty() instead'] pub fn (ctx &Context) draw_empty_poly(points []f32, c gx.Color) { ctx.draw_poly_empty(points, c) } // TODO: Fix alpha [deprecated: 'use draw_rect_filled() instead'] pub fn (ctx &Context) draw_rect(x f32, y f32, w f32, h f32, c gx.Color) { ctx.draw_rect_filled(x, y, w, h, c) } // Draws the outline of a rectangle [deprecated: 'use draw_rect_empty() instead'] pub fn (ctx &Context) draw_empty_rect(x f32, y f32, w f32, h f32, c gx.Color) { ctx.draw_rect_empty(x, y, w, h, c) } [deprecated: 'use draw_rounded_rect_empty()'] pub fn (ctx &Context) draw_empty_rounded_rect(x f32, y f32, w f32, h f32, radius f32, c gx.Color) { ctx.draw_rounded_rect_empty(x, y, w, h, radius, c) } [deprecated: 'use draw_rounded_rect_filled()'] pub fn (ctx &Context) draw_rounded_rect(x f32, y f32, w f32, h f32, radius f32, c gx.Color) { ctx.draw_rounded_rect_filled(x, y, w, h, radius, c) } // Draws the outline of a triangle [deprecated: 'use draw_triangle_empty() instead'] pub fn (ctx &Context) draw_empty_triangle(x f32, y f32, x2 f32, y2 f32, x3 f32, y3 f32, c gx.Color) { ctx.draw_triangle_empty(x, y, x2, y2, x3, y3, c) } // Draws a filled triangle [deprecated: 'use draw_triangle_filled() instead'] pub fn (ctx &Context) draw_triangle(x f32, y f32, x2 f32, y2 f32, x3 f32, y3 f32, c gx.Color) { ctx.draw_triangle_filled(x, y, x2, y2, x3, y3, c) } // Draws the outline of a square [deprecated: 'use draw_square_empty() instead'] pub fn (ctx &Context) draw_empty_square(x f32, y f32, s f32, c gx.Color) { ctx.draw_square_empty(x, y, s, c) } // Draws a filled square [deprecated: 'use draw_square_filled() instead'] pub fn (ctx &Context) draw_square(x f32, y f32, s f32, c gx.Color) { ctx.draw_square_filled(x, y, s, c) } [deprecated: 'use draw_circle_filled() instead'] pub fn (ctx &Context) draw_circle(x f32, y f32, radius f32, c gx.Color) { ctx.draw_circle_filled(x, y, radius, c) } [deprecated: 'use draw_slice_empty() instead'] pub fn (ctx &Context) draw_empty_slice(x f32, y f32, radius f32, start_angle f32, end_angle f32, segments int, c gx.Color) { ctx.draw_slice_empty(x, y, radius, start_angle, end_angle, segments, c) } [deprecated: 'use draw_slice_filled() instead'] pub fn (ctx &Context) draw_slice(x f32, y f32, radius f32, start_angle f32, end_angle f32, segments int, c gx.Color) { ctx.draw_slice_filled(x, y, radius, start_angle, end_angle, segments, c) } [deprecated: 'use draw_arc_empty() instead'] pub fn (ctx &Context) draw_empty_arc(x f32, y f32, inner_radius f32, thickness f32, start_angle f32, end_angle f32, segments int, c gx.Color) { ctx.draw_arc_empty(x, y, inner_radius, thickness, start_angle, end_angle, segments, c) } [deprecated: 'use draw_arc_filled() instead'] pub fn (ctx &Context) draw_arc(x f32, y f32, inner_radius f32, thickness f32, start_angle f32, end_angle f32, segments int, c gx.Color) { ctx.draw_arc_filled(x, y, inner_radius, thickness, start_angle, end_angle, segments, c) } [deprecated: 'use draw_ellipse_empty() instead'] pub fn (ctx &Context) draw_empty_ellipse(x f32, y f32, rw f32, rh f32, c gx.Color) { ctx.draw_ellipse_empty(x, y, rw, rh, c) } [deprecated: 'use draw_ellipse_filled() instead'] pub fn (ctx &Context) draw_ellipse(x f32, y f32, rw f32, rh f32, c gx.Color) { ctx.draw_ellipse_filled(x, y, rw, rh, c) }