// Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module math #include // NOTE // When adding a new function, please make sure it's in the right place. // All functions are sorted alphabetically. const ( e = 2.71828182845904523536028747135266249775724709369995957496696763 pi = 3.14159265358979323846264338327950288419716939937510582097494459 phi = 1.61803398874989484820458683436563811772030917980576286213544862 tau = 6.28318530717958647692528676655900576839433879875021164194988918 sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974 sqrt_e = 1.64872127070012814684865078781416357165377610071014801157507931 sqrt_pi = 1.77245385090551602729816748334114518279754945612238712821380779 sqrt_tau = 2.50662827463100050241576528481104525300698674060993831662992357 sqrt_phi = 1.27201964951406896425242246173749149171560804184009624861664038 ln2 = 0.693147180559945309417232121458176568075500134360255254120680009 log2_e = 1.0 / ln2 ln10 = 2.30258509299404568401799145468436420760110148862877297603332790 log10_e = 1.0 / ln10 ) const ( max_i8 = 127 min_i8 = -128 max_i16 = 32767 min_i16 = -32768 max_i32 = 2147483647 min_i32 = -2147483648 // MaxI64 = ((1<<63) - 1) // MinI64 = (-(1 << 63) ) max_u8 = 255 max_u16 = 65535 max_u32 = 4294967295 max_u64 = 18446744073709551615 ) // Returns the absolute value. pub fn abs(a f64) f64 { if a < 0 { return -a } return a } fn C.acos(a f64) f64 // acos calculates inverse cosine (arccosine). pub fn acos(a f64) f64 { return C.acos(a) } // asin calculates inverse sine (arcsine). pub fn asin(a f64) f64 { return C.asin(a) } // atan calculates inverse tangent (arctangent). pub fn atan(a f64) f64 { return C.atan(a) } // atan2 calculates inverse tangent with two arguments, returns the angle between the X axis and the point. pub fn atan2(a, b f64) f64 { return C.atan2(a, b) } // cbrt calculates cubic root. pub fn cbrt(a f64) f64 { return C.cbrt(a) } // ceil returns the nearest integer greater or equal to the provided value. pub fn ceil(a f64) int { return C.ceil(a) } // cos calculates cosine. pub fn cos(a f64) f64 { return C.cos(a) } // cosh calculates hyperbolic cosine. pub fn cosh(a f64) f64 { return C.cosh(a) } // degrees convert from degrees to radians. pub fn degrees(radians f64) f64 { return radians * (180.0 / pi) } // exp calculates exponent of the number (math.pow(math.E, a)). pub fn exp(a f64) f64 { return C.exp(a) } // digits returns an array of the digits of n in the given base. pub fn digits(_n, base int) []int { mut n := _n mut sign := 1 if n < 0 { sign = -1 n = -n } mut res := []int for n != 0 { res << (n % base) * sign n /= base } return res } // erf computes the error function value pub fn erf(a f64) f64 { return C.erf(a) } // erfc computes the complementary error function value pub fn erfc(a f64) f64 { return C.erfc(a) } // exp2 returns the base-2 exponential function of a (math.pow(2, a)). pub fn exp2(a f64) f64 { return C.exp2(a) } // factorial calculates the factorial of the provided value. // TODO bring back once multiple value functions are implemented /* fn recursive_product( n int, current_number_ptr &int) int{ mut m := n / 2 if (m == 0){ return *current_number_ptr += 2 } if (n == 2){ return (*current_number_ptr += 2) * (*current_number_ptr += 2) } return recursive_product((n - m), *current_number_ptr) * recursive_product(m, *current_number_ptr) } pub fn factorial(n int) i64 { if n < 0 { panic('factorial: Cannot find factorial of negative number') } if n < 2 { return i64(1) } mut r := 1 mut p := 1 mut current_number := 1 mut h := 0 mut shift := 0 mut high := 1 mut len := high mut log2n := int(floor(log2(n))) for ;h != n; { shift += h h = n >> log2n log2n -= 1 len = high high = (h - 1) | 1 len = (high - len)/2 if (len > 0){ p *= recursive_product(len, ¤t_number) r *= p } } return i64((r << shift)) } */ // floor returns the nearest integer lower or equal of the provided value. pub fn floor(a f64) f64 { return C.floor(a) } // fmod returns the floating-point remainder of number / denom (rounded towards zero): pub fn fmod(a, b f64) f64 { return C.fmod(a, b) } // gamma computes the gamma function value pub fn gamma(a f64) f64 { return C.tgamma(a) } // gcd calculates greatest common (positive) divisor (or zero if a and b are both zero). pub fn gcd(a_, b_ i64) i64 { mut a := a_ mut b := b_ if a < 0 { a = -a } if b < 0 { b = -b } for b != 0 { a %= b if a == 0 { return b } b %= a } return a } // Returns hypotenuse of a right triangle. pub fn hypot(a, b f64) f64 { return C.hypot(a, b) } // lcm calculates least common (non-negative) multiple. pub fn lcm(a, b i64) i64 { if a == 0 { return a } res := a * (b / gcd(b, a)) if res < 0 { return -res } return res } // log calculates natural (base-e) logarithm of the provided value. pub fn log(a f64) f64 { return C.log(a) } // log2 calculates base-2 logarithm of the provided value. pub fn log2(a f64) f64 { return C.log2(a) } // log10 calculates the common (base-10) logarithm of the provided value. pub fn log10(a f64) f64 { return C.log10(a) } // log_gamma computes the log-gamma function value pub fn log_gamma(a f64) f64 { return C.lgamma(a) } // log_n calculates base-N logarithm of the provided value. pub fn log_n(a, b f64) f64 { return C.log(a) / C.log(b) } // max returns the maximum value of the two provided. pub fn max(a, b f64) f64 { if a > b { return a } return b } // min returns the minimum value of the two provided. pub fn min(a, b f64) f64 { if a < b { return a } return b } // pow returns base raised to the provided power. pub fn pow(a, b f64) f64 { return C.pow(a, b) } // radians convert from radians to degrees. pub fn radians(degrees f64) f64 { return degrees * (pi / 180.0) } // round returns the integer nearest to the provided value. pub fn round(f f64) f64 { return C.round(f) } // sin calculates sine. pub fn sin(a f64) f64 { return C.sin(a) } // sinh calculates hyperbolic sine. pub fn sinh(a f64) f64 { return C.sinh(a) } // sqrt calculates square-root of the provided value. pub fn sqrt(a f64) f64 { return C.sqrt(a) } // tan calculates tangent. pub fn tan(a f64) f64 { return C.tan(a) } // tanh calculates hyperbolic tangent. pub fn tanh(a f64) f64 { return C.tanh(a) } // trunc rounds a toward zero, returning the nearest integral value that is not // larger in magnitude than a. pub fn trunc(a f64) f64 { return C.trunc(a) }