// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module time #include const ( days_string = 'MonTueWedThuFriSatSun' month_days = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] months_string = 'JanFebMarAprMayJunJulAugSepOctNovDec' // The unsigned zero year for internal calculations. // Must be 1 mod 400, and times before it will not compute correctly, // but otherwise can be changed at will. absolute_zero_year = i64(-292277022399) // as i64 seconds_per_minute = 60 seconds_per_hour = 60 * seconds_per_minute seconds_per_day = 24 * seconds_per_hour seconds_per_week = 7 * seconds_per_day days_per_400_years = 365 * 400 + 97 days_per_100_years = 365 * 100 + 24 days_per_4_years = 365 * 4 + 1 days_before = [ 0, 31, 31 + 28, 31 + 28 + 31, 31 + 28 + 31 + 30, 31 + 28 + 31 + 30 + 31, 31 + 28 + 31 + 30 + 31 + 30, 31 + 28 + 31 + 30 + 31 + 30 + 31, 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31, 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30, 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31, 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30, 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31, ] long_days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] ) pub struct Time { pub: year int month int day int hour int minute int second int microsecond int unix u64 } pub enum FormatTime { hhmm12 hhmm24 hhmmss12 hhmmss24 hhmmss24_milli hhmmss24_micro no_time } pub enum FormatDate { ddmmyy ddmmyyyy mmddyy mmddyyyy mmmd mmmdd mmmddyyyy no_date yyyymmdd } pub enum FormatDelimiter { dot hyphen slash space no_delimiter } pub struct C.timeval { tv_sec u64 tv_usec u64 } fn C.localtime(t &C.time_t) &C.tm fn C.time(t &C.time_t) C.time_t // now returns current local time. pub fn now() Time { $if macos { return darwin_now() } $if windows { return win_now() } $if solaris { return solaris_now() } $if linux || android { return linux_now() } // defaults to most common feature, the microsecond precision is not available // in this API call t := C.time(0) now := C.localtime(&t) return convert_ctime(now, 0) } // utc returns the current time in utc pub fn utc() Time { $if macos { return darwin_utc() } $if windows { return win_utc() } $if solaris { return solaris_utc() } $if linux || android { return linux_utc() } // defaults to most common feature, the microsecond precision is not available // in this API call t := C.time(0) _ = C.time(&t) return unix2(int(t), 0) } // smonth returns month name. pub fn (t Time) smonth() string { if t.month <= 0 || t.month > 12 { return '---' } i := t.month - 1 return months_string[i * 3..(i + 1) * 3] } // new_time returns a time struct with calculated Unix time. pub fn new_time(t Time) Time { if t.unix != 0 { return t } tt := C.tm{ tm_sec: t.second tm_min: t.minute tm_hour: t.hour tm_mday: t.day tm_mon: t.month - 1 tm_year: t.year - 1900 } utime := u64(make_unix_time(tt)) return { t | unix: utime } } // unix_time returns Unix time. [inline] pub fn (t Time) unix_time() int { return int(t.unix) } // unix_time_milli returns Unix time with millisecond resolution. [inline] pub fn (t Time) unix_time_milli() u64 { return t.unix * 1000 + u64(t.microsecond / 1000) } // add_seconds returns a new time struct with an added number of seconds. pub fn (t Time) add_seconds(seconds int) Time { // TODO Add(d time.Duration) return unix(int(t.unix + u64(seconds))) } // add_days returns a new time struct with an added number of days. pub fn (t Time) add_days(days int) Time { return unix(int(t.unix + u64(i64(days) * 3600 * 24))) } // since returns a number of seconds elapsed since a given time. fn since(t Time) int { // TODO Use time.Duration instead of seconds return 0 } // relative returns a string representation of difference between time // and current time. pub fn (t Time) relative() string { znow := now() secs := znow.unix - t.unix if secs <= 30 { // right now or in the future // TODO handle time in the future return 'now' } if secs < 60 { return '1m' } if secs < 3600 { m := secs / 60 if m == 1 { return '1 minute ago' } return '$m minutes ago' } if secs < 3600 * 24 { h := secs / 3600 if h == 1 { return '1 hour ago' } return '$h hours ago' } if secs < 3600 * 24 * 5 { d := secs / 3600 / 24 if d == 1 { return '1 day ago' } return '$d days ago' } if secs > 3600 * 24 * 10000 { return '' } return t.md() } pub fn (t Time) relative_short() string { znow := now() secs := znow.unix - t.unix if secs <= 30 { // right now or in the future // TODO handle time in the future return 'now' } if secs < 60 { return '1m' } if secs < 3600 { return '${secs / 60}m' } if secs < 3600 * 24 { return '${secs / 3600}h' } if secs < 3600 * 24 * 5 { return '${secs / 3600 / 24}d' } if secs > 3600 * 24 * 10000 { return '' } return t.md() } // day_of_week returns the current day of a given year, month, and day, // as an integer. pub fn day_of_week(y int, m int, d int) int { // Sakomotho's algorithm is explained here: // https://stackoverflow.com/a/6385934 t := [0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4] mut sy := y if m < 3 { sy = sy - 1 } return (sy + sy / 4 - sy / 100 + sy / 400 + t[m - 1] + d - 1) % 7 + 1 } // day_of_week returns the current day as an integer. pub fn (t Time) day_of_week() int { return day_of_week(t.year, t.month, t.day) } // weekday_str returns the current day as a string. pub fn (t Time) weekday_str() string { i := t.day_of_week() - 1 return days_string[i * 3..(i + 1) * 3] } // weekday_str returns the current day as a string. pub fn (t Time) long_weekday_str() string { i := t.day_of_week() - 1 return long_days[i] } // ticks returns a number of milliseconds elapsed since system start. pub fn ticks() i64 { $if windows { return C.GetTickCount() } $else { ts := C.timeval{} C.gettimeofday(&ts, 0) return i64(ts.tv_sec * u64(1000) + (ts.tv_usec / u64(1000))) } // t := i64(C.mach_absolute_time()) // # Nanoseconds elapsedNano = AbsoluteToNanoseconds( *(AbsoluteTime *) &t ); // # return (double)(* (uint64_t *) &elapsedNano) / 1000000; } // sleep makes the calling thread sleep for a given number of seconds. pub fn sleep(seconds int) { $if windows { C.Sleep(seconds * 1000) } $else { C.sleep(seconds) } } // sleep_ms makes the calling thread sleep for a given number of milliseconds. pub fn sleep_ms(milliseconds int) { $if windows { C.Sleep(milliseconds) } $else { C.usleep(milliseconds * 1000) } } // usleep makes the calling thread sleep for a given number of microseconds. pub fn usleep(microseconds int) { $if windows { milliseconds := microseconds / 1000 C.Sleep(milliseconds) } $else { C.usleep(microseconds) } } // is_leap_year checks if a given a year is a leap year. pub fn is_leap_year(year int) bool { return (year % 4 == 0) && (year % 100 != 0 || year % 400 == 0) } // days_in_month returns a number of days in a given month. pub fn days_in_month(month int, year int) ?int { if month > 12 || month < 1 { return error('Invalid month: $month') } extra := if month == 2 && is_leap_year(year) { 1 } else { 0 } res := month_days[month - 1] + extra return res } // str returns time in the same format as `parse` expects ("YYYY-MM-DD HH:MM:SS"). pub fn (t Time) str() string { // TODO Define common default format for // `str` and `parse` and use it in both ways return t.format_ss() } // Time subtract using eperator overloading pub fn (lhs Time) -(rhs Time) Duration { lhs_micro := lhs.unix * 1000 * 1000 + u64(lhs.microsecond) rhs_micro := rhs.unix * 1000 * 1000 + u64(rhs.microsecond) return (i64(lhs_micro) - i64(rhs_micro)) * microsecond } fn convert_ctime(t C.tm, microsecond int) Time { return Time{ year: t.tm_year + 1900 month: t.tm_mon + 1 day: t.tm_mday hour: t.tm_hour minute: t.tm_min second: t.tm_sec microsecond: microsecond unix: u64(make_unix_time(t)) } } // A lot of these are taken from the Go library pub type Duration = i64 pub const ( nanosecond = Duration(1) microsecond = Duration(1000) * nanosecond millisecond = Duration(1000) * microsecond second = Duration(1000) * millisecond minute = Duration(60) * second hour = Duration(60) * minute infinite = Duration(-1) ) // nanoseconds returns the duration as an integer number of nanoseconds. pub fn (d Duration) nanoseconds() i64 { return i64(d) } // microseconds returns the duration as an integer number of microseconds. pub fn (d Duration) microseconds() i64 { return i64(d) / 1000 } // milliseconds returns the duration as an integer number of milliseconds. pub fn (d Duration) milliseconds() i64 { return i64(d) / 1000000 } // The following functions return floating point numbers because it's common to // consider all of them in sub-one intervals // seconds returns the duration as a floating point number of seconds. pub fn (d Duration) seconds() f64 { sec := d / second nsec := d % second return f64(sec) + f64(nsec) / 1e9 } // minutes returns the duration as a floating point number of minutes. pub fn (d Duration) minutes() f64 { min := d / minute nsec := d % minute return f64(min) + f64(nsec) / (60 * 1e9) } // hours returns the duration as a floating point number of hours. pub fn (d Duration) hours() f64 { hr := d / hour nsec := d % hour return f64(hr) + f64(nsec) / (60 * 60 * 1e9) }