/********************************************************************** * * .obj loader * * Copyright (c) 2021 Dario Deledda. All rights reserved. * Use of this source code is governed by an MIT license * that can be found in the LICENSE file. * * TODO: **********************************************************************/ module obj import sokol.gfx import gg.m4 import math import stbi /****************************************************************************** * Texture functions ******************************************************************************/ pub fn create_texture(w int, h int, buf &byte) C.sg_image { sz := w * h * 4 mut img_desc := C.sg_image_desc{ width: w height: h num_mipmaps: 0 min_filter: .linear mag_filter: .linear // usage: .dynamic wrap_u: .clamp_to_edge wrap_v: .clamp_to_edge label: &byte(0) d3d11_texture: 0 } // comment if .dynamic is enabled img_desc.data.subimage[0][0] = C.sg_range{ ptr: buf size: size_t(sz) } sg_img := C.sg_make_image(&img_desc) return sg_img } pub fn destroy_texture(sg_img C.sg_image) { C.sg_destroy_image(sg_img) } pub fn load_texture(file_name string) C.sg_image { buffer := read_bytes_from_file(file_name) stbi.set_flip_vertically_on_load(true) img := stbi.load_from_memory(buffer.data, buffer.len) or { eprintln('Texure file: [$file_name] ERROR!') exit(0) } res := create_texture(int(img.width), int(img.height), img.data) img.free() return res } /****************************************************************************** * Pipeline ******************************************************************************/ pub fn (mut obj_part ObjPart) create_pipeline(in_part []int, shader C.sg_shader, texture C.sg_image) Render_data { mut res := Render_data{} obj_buf := obj_part.get_buffer(in_part) res.n_vert = obj_buf.n_vertex res.material = obj_part.part[in_part[0]].material // vertex buffer mut vert_buffer_desc := C.sg_buffer_desc{} unsafe { C.memset(&vert_buffer_desc, 0, sizeof(vert_buffer_desc)) } vert_buffer_desc.size = size_t(obj_buf.vbuf.len * int(sizeof(Vertex_pnct))) vert_buffer_desc.data = C.sg_range{ ptr: obj_buf.vbuf.data size: size_t(obj_buf.vbuf.len * int(sizeof(Vertex_pnct))) } vert_buffer_desc.@type = .vertexbuffer vert_buffer_desc.label = 'vertbuf_part_${in_part:03}'.str vbuf := gfx.make_buffer(&vert_buffer_desc) // index buffer mut index_buffer_desc := C.sg_buffer_desc{} unsafe { C.memset(&index_buffer_desc, 0, sizeof(index_buffer_desc)) } index_buffer_desc.size = size_t(obj_buf.ibuf.len * int(sizeof(u32))) index_buffer_desc.data = C.sg_range{ ptr: obj_buf.ibuf.data size: size_t(obj_buf.ibuf.len * int(sizeof(u32))) } index_buffer_desc.@type = .indexbuffer index_buffer_desc.label = 'indbuf_part_${in_part:03}'.str ibuf := gfx.make_buffer(&index_buffer_desc) mut pipdesc := C.sg_pipeline_desc{} unsafe { C.memset(&pipdesc, 0, sizeof(pipdesc)) } pipdesc.layout.buffers[0].stride = int(sizeof(Vertex_pnct)) // the constants [C.ATTR_vs_a_Position, C.ATTR_vs_a_Color, C.ATTR_vs_a_Texcoord0] are generated by sokol-shdc pipdesc.layout.attrs[C.ATTR_vs_a_Position].format = .float3 // x,y,z as f32 pipdesc.layout.attrs[C.ATTR_vs_a_Normal].format = .float3 // x,y,z as f32 pipdesc.layout.attrs[C.ATTR_vs_a_Color].format = .ubyte4n // color as u32 pipdesc.layout.attrs[C.ATTR_vs_a_Texcoord0].format = .float2 // u,v as f32 // pipdesc.layout.attrs[C.ATTR_vs_a_Texcoord0].format = .short2n // u,v as u16 pipdesc.index_type = .uint32 color_state := C.sg_color_state{ blend: C.sg_blend_state{ enabled: true src_factor_rgb: gfx.BlendFactor(C.SG_BLENDFACTOR_SRC_ALPHA) dst_factor_rgb: gfx.BlendFactor(C.SG_BLENDFACTOR_ONE_MINUS_SRC_ALPHA) } } pipdesc.colors[0] = color_state pipdesc.depth = C.sg_depth_state{ write_enabled: true compare: gfx.CompareFunc(C.SG_COMPAREFUNC_LESS_EQUAL) } pipdesc.cull_mode = .front pipdesc.label = 'pip_part_${in_part:03}'.str // shader pipdesc.shader = shader res.bind.vertex_buffers[0] = vbuf res.bind.index_buffer = ibuf res.bind.fs_images[C.SLOT_tex] = texture res.pipeline = gfx.make_pipeline(&pipdesc) // println('Buffers part [$in_part] init done!') return res } /****************************************************************************** * Render functions ******************************************************************************/ // agregate all the part by materials pub fn (mut obj_part ObjPart) init_render_data(texture C.sg_image) { // create shader // One shader for all the model shader := gfx.make_shader(C.gouraud_shader_desc(gfx.query_backend())) mut part_dict := map[string][]int{} for i, p in obj_part.part { if p.faces.len > 0 { part_dict[p.material] << i } } obj_part.rend_data.clear() // println("Material dict: ${obj_part.mat_map.keys()}") for k, v in part_dict { // println("$k => Parts $v") mut txt := texture if k in obj_part.mat_map { mat_map := obj_part.mat[obj_part.mat_map[k]] if 'map_Kd' in mat_map.maps { file_name := mat_map.maps['map_Kd'] if file_name in obj_part.texture { txt = obj_part.texture[file_name] // println("Texture [${file_name}] => from CACHE") } else { txt = load_texture(file_name) obj_part.texture[file_name] = txt // println("Texture [${file_name}] => LOADED") } } } // key := obj_part.texture.keys()[0] // obj_part.rend_data << obj_part.create_pipeline(v, shader, obj_part.texture[key]) obj_part.rend_data << obj_part.create_pipeline(v, shader, txt) } // println("Texture array len: ${obj_part.texture.len}") // println("Calc bounding box.") obj_part.calc_bbox() println('init_render_data DONE!') } pub fn (obj_part ObjPart) bind_and_draw(rend_data_index int, in_data Shader_data) u32 { // apply the pipline and bindings mut part_render_data := obj_part.rend_data[rend_data_index] // pass light position mut tmp_fs_params := Tmp_fs_param{} tmp_fs_params.ligth = in_data.fs_data.ligth if part_render_data.material in obj_part.mat_map { mat_index := obj_part.mat_map[part_render_data.material] mat := obj_part.mat[mat_index] // ambient tmp_fs_params.ka = in_data.fs_data.ka if 'Ka' in mat.ks { tmp_fs_params.ka = mat.ks['Ka'] } // specular tmp_fs_params.ks = in_data.fs_data.ks if 'Ks' in mat.ks { tmp_fs_params.ks = mat.ks['Ks'] } // specular exponent Ns if 'Ns' in mat.ns { tmp_fs_params.ks.e[3] = mat.ns['Ns'] / 1000.0 } else { // defautl value is 10 tmp_fs_params.ks.e[3] = f32(10) / 1000.0 } // diffuse tmp_fs_params.kd = in_data.fs_data.kd if 'Kd' in mat.ks { tmp_fs_params.kd = mat.ks['Kd'] } // alpha/transparency if 'Tr' in mat.ns { tmp_fs_params.kd.e[3] = mat.ns['Tr'] } } gfx.apply_pipeline(part_render_data.pipeline) gfx.apply_bindings(part_render_data.bind) vs_uniforms_range := C.sg_range{ ptr: in_data.vs_data size: size_t(in_data.vs_len) } fs_uniforms_range := C.sg_range{ ptr: &tmp_fs_params size: size_t(in_data.fs_len) } gfx.apply_uniforms(C.SG_SHADERSTAGE_VS, C.SLOT_vs_params, &vs_uniforms_range) gfx.apply_uniforms(C.SG_SHADERSTAGE_FS, C.SLOT_fs_params, &fs_uniforms_range) gfx.draw(0, int(part_render_data.n_vert), 1) return part_render_data.n_vert } pub fn (obj_part ObjPart) bind_and_draw_all(in_data Shader_data) u32 { mut n_vert := u32(0) // println("Parts: ${obj_part.rend_data.len}") for i, _ in obj_part.rend_data { n_vert += obj_part.bind_and_draw(i, in_data) } return n_vert } pub fn (mut obj_part ObjPart) calc_bbox() { obj_part.max = m4.Vec4{ e: [f32(-math.max_f32), -math.max_f32, -math.max_f32, 0]! } obj_part.min = m4.Vec4{ e: [f32(math.max_f32), math.max_f32, math.max_f32, 0]! } for v in obj_part.v { if v.e[0] > obj_part.max.e[0] { obj_part.max.e[0] = v.e[0] } if v.e[1] > obj_part.max.e[1] { obj_part.max.e[1] = v.e[1] } if v.e[2] > obj_part.max.e[2] { obj_part.max.e[2] = v.e[2] } if v.e[0] < obj_part.min.e[0] { obj_part.min.e[0] = v.e[0] } if v.e[1] < obj_part.min.e[1] { obj_part.min.e[1] = v.e[1] } if v.e[2] < obj_part.min.e[2] { obj_part.min.e[2] = v.e[2] } } val1 := obj_part.max.mod3() val2 := obj_part.min.mod3() if val1 > val2 { obj_part.radius = f32(val1) } else { obj_part.radius = f32(val2) } // println("BBox: ${obj_part.min} <=> ${obj_part.max}\nRadius: ${obj_part.radius}") }