// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module bits const ( // See http://supertech.csail.mit.edu/papers/debruijn.pdf de_bruijn32 = u32(0x077CB531) de_bruijn32tab = [byte(0), 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9, ] de_bruijn64 = (0x03f79d71b4ca8b09) de_bruijn64tab = [byte(0), 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4, 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5, 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11, 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6, ] ) const ( m0 = 0x5555555555555555 // 01010101 ... m1 = 0x3333333333333333 // 00110011 ... m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ... m3 = 0x00ff00ff00ff00ff // etc. m4 = 0x0000ffff0000ffff ) const ( // save importing math mod just for these max_u32 = 4294967295 max_u64 = 18446744073709551615 ) // --- LeadingZeros --- // leading_zeros_8 returns the number of leading zero bits in x; the result is 8 for x == 0. pub fn leading_zeros_8(x byte) int { return 8 - len_8(x) } // leading_zeros_16 returns the number of leading zero bits in x; the result is 16 for x == 0. pub fn leading_zeros_16(x u16) int { return 16 - len_16(x) } // leading_zeros_32 returns the number of leading zero bits in x; the result is 32 for x == 0. pub fn leading_zeros_32(x u32) int { return 32 - len_32(x) } // leading_zeros_64 returns the number of leading zero bits in x; the result is 64 for x == 0. pub fn leading_zeros_64(x u64) int { return 64 - len_64(x) } // --- TrailingZeros --- // trailing_zeros_8 returns the number of trailing zero bits in x; the result is 8 for x == 0. pub fn trailing_zeros_8(x byte) int { return int(ntz_8_tab[x]) } // trailing_zeros_16 returns the number of trailing zero bits in x; the result is 16 for x == 0. pub fn trailing_zeros_16(x u16) int { if x == 0 { return 16 } // see comment in trailing_zeros_64 return int(de_bruijn32tab[u32(x & -x) * de_bruijn32>>(32 - 5)]) } // trailing_zeros_32 returns the number of trailing zero bits in x; the result is 32 for x == 0. pub fn trailing_zeros_32(x u32) int { if x == 0 { return 32 } // see comment in trailing_zeros_64 return int(de_bruijn32tab[(x & -x) * de_bruijn32>>(32 - 5)]) } // trailing_zeros_64 returns the number of trailing zero bits in x; the result is 64 for x == 0. pub fn trailing_zeros_64(x u64) int { if x == 0 { return 64 } // If popcount is fast, replace code below with return popcount(^x & (x - 1)). // // x & -x leaves only the right-most bit set in the word. Let k be the // index of that bit. Since only a single bit is set, the value is two // to the power of k. Multiplying by a power of two is equivalent to // left shifting, in this case by k bits. The de Bruijn (64 bit) constant // is such that all six bit, consecutive substrings are distinct. // Therefore, if we have a left shifted version of this constant we can // find by how many bits it was shifted by looking at which six bit // substring ended up at the top of the word. // (Knuth, volume 4, section 7.3.1) return int(de_bruijn64tab[(x & -x) * de_bruijn64>>(64 - 6)]) } // --- OnesCount --- // ones_count_8 returns the number of one bits ("population count") in x. pub fn ones_count_8(x byte) int { return int(pop_8_tab[x]) } // ones_count_16 returns the number of one bits ("population count") in x. pub fn ones_count_16(x u16) int { return int(pop_8_tab[x>>8] + pop_8_tab[x & u16(0xff)]) } // ones_count_32 returns the number of one bits ("population count") in x. pub fn ones_count_32(x u32) int { return int(pop_8_tab[x>>24] + pop_8_tab[x>>16 & 0xff] + pop_8_tab[x>>8 & 0xff] + pop_8_tab[x & u32(0xff)]) } // ones_count_64 returns the number of one bits ("population count") in x. pub fn ones_count_64(x u64) int { // Implementation: Parallel summing of adjacent bits. // See "Hacker's Delight", Chap. 5: Counting Bits. // The following pattern shows the general approach: // // x = x>>1&(m0&m) + x&(m0&m) // x = x>>2&(m1&m) + x&(m1&m) // x = x>>4&(m2&m) + x&(m2&m) // x = x>>8&(m3&m) + x&(m3&m) // x = x>>16&(m4&m) + x&(m4&m) // x = x>>32&(m5&m) + x&(m5&m) // return int(x) // // Masking (& operations) can be left away when there's no // danger that a field's sum will carry over into the next // field: Since the result cannot be > 64, 8 bits is enough // and we can ignore the masks for the shifts by 8 and up. // Per "Hacker's Delight", the first line can be simplified // more, but it saves at best one instruction, so we leave // it alone for clarity. mut y := (x>>u64(1) & (m0 & max_u64)) + (x & (m0 & max_u64)) y = (y>>u64(2) & (m1 & max_u64)) + (y & (m1 & max_u64)) y = ((y>>4) + y) & (m2 & max_u64) y += y>>8 y += y>>16 y += y>>32 return int(y) & ((1<<7) - 1) } // --- RotateLeft --- // rotate_left_8 returns the value of x rotated left by (k mod 8) bits. // To rotate x right by k bits, call rotate_left_8(x, -k). // // This function's execution time does not depend on the inputs. [inline] pub fn rotate_left_8(x byte, k int) byte { n := byte(8) s := byte(k) & (n - byte(1)) return ((x<>(n - s))) } // rotate_left_16 returns the value of x rotated left by (k mod 16) bits. // To rotate x right by k bits, call rotate_left_16(x, -k). // // This function's execution time does not depend on the inputs. [inline] pub fn rotate_left_16(x u16, k int) u16 { n := u16(16) s := u16(k) & (n - u16(1)) return ((x<>(n - s))) } // rotate_left_32 returns the value of x rotated left by (k mod 32) bits. // To rotate x right by k bits, call rotate_left_32(x, -k). // // This function's execution time does not depend on the inputs. [inline] pub fn rotate_left_32(x u32, k int) u32 { n := u32(32) s := u32(k) & (n - u32(1)) return ((x<>(n - s))) } // rotate_left_64 returns the value of x rotated left by (k mod 64) bits. // To rotate x right by k bits, call rotate_left_64(x, -k). // // This function's execution time does not depend on the inputs. [inline] pub fn rotate_left_64(x u64, k int) u64 { n := u64(64) s := u64(k) & (n - u64(1)) return ((x<>(n - s))) } // --- Reverse --- // reverse_8 returns the value of x with its bits in reversed order. [inline] pub fn reverse_8(x byte) byte { return rev_8_tab[x] } // reverse_16 returns the value of x with its bits in reversed order. [inline] pub fn reverse_16(x u16) u16 { return u16(rev_8_tab[x>>8]) | (u16(rev_8_tab[x & u16(0xff)])<<8) } // reverse_32 returns the value of x with its bits in reversed order. [inline] pub fn reverse_32(x u32) u32 { mut y := (x>>u32(1) & (m0 & max_u32) | ((x & (m0 & max_u32))<<1)) y = (y>>u32(2) & (m1 & max_u32) | ((y & (m1 & max_u32))<>u32(4) & (m2 & max_u32) | ((y & (m2 & max_u32))<>u64(1) & (m0 & max_u64) | ((x & (m0 & max_u64))<<1)) y = (y>>u64(2) & (m1 & max_u64) | ((y & (m1 & max_u64))<<2)) y = (y>>u64(4) & (m2 & max_u64) | ((y & (m2 & max_u64))<<4)) return reverse_bytes_64(y) } // --- ReverseBytes --- // reverse_bytes_16 returns the value of x with its bytes in reversed order. // // This function's execution time does not depend on the inputs. [inline] pub fn reverse_bytes_16(x u16) u16 { return (x>>8) | (x<<8) } // reverse_bytes_32 returns the value of x with its bytes in reversed order. // // This function's execution time does not depend on the inputs. [inline] pub fn reverse_bytes_32(x u32) u32 { y := (x>>u32(8) & (m3 & max_u32) | ((x & (m3 & max_u32))<>16) | (y<<16) } // reverse_bytes_64 returns the value of x with its bytes in reversed order. // // This function's execution time does not depend on the inputs. [inline] pub fn reverse_bytes_64(x u64) u64 { mut y := (x>>u64(8) & (m3 & max_u64) | ((x & (m3 & max_u64))<>u64(16) & (m4 & max_u64) | ((y & (m4 & max_u64))<>32) | (y<<32) } // --- Len --- // len_8 returns the minimum number of bits required to represent x; the result is 0 for x == 0. pub fn len_8(x byte) int { return int(len_8_tab[x]) } // len_16 returns the minimum number of bits required to represent x; the result is 0 for x == 0. pub fn len_16(x u16) int { mut y := x mut n := 0 if y >= 1<<8 { y >>= 8 n = 8 } return n + int(len_8_tab[y]) } // len_32 returns the minimum number of bits required to represent x; the result is 0 for x == 0. pub fn len_32(x u32) int { mut y := x mut n := 0 if y >= 1<<16 { y >>= 16 n = 16 } if y >= 1<<8 { y >>= 8 n += 8 } return n + int(len_8_tab[y]) } // len_64 returns the minimum number of bits required to represent x; the result is 0 for x == 0. pub fn len_64(x u64) int { mut y := x mut n := 0 if y >= u64(1)<>= 32 n = 32 } if y >= u64(1)<>= 16 n += 16 } if y >= u64(1)<>= 8 n += 8 } return n + int(len_8_tab[y]) }