module math // The vlang code is a modified version of the original C code from // http://www.netlib.org/fdlibm/s_cbrt.c and came with this notice. // // ==================================================== // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. // // Developed at SunSoft, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this // software is freely granted, provided that this notice // is preserved. // ==================================================== // cbrt returns the cube root of a. // // special cases are: // cbrt(±0) = ±0 // cbrt(±inf) = ±inf // cbrt(nan) = nan pub fn cbrt(a f64) f64 { mut x := a b1 := 715094163 // (682-0.03306235651)*2**20 b2 := 696219795 // (664-0.03306235651)*2**20 c := 5.42857142857142815906e-01 // 19/35 = 0x3FE15F15F15F15F1 d := -7.05306122448979611050e-01 // -864/1225 = 0xBFE691DE2532C834 e_ := 1.41428571428571436819e+00 // 99/70 = 0x3FF6A0EA0EA0EA0F f := 1.60714285714285720630e+00 // 45/28 = 0x3FF9B6DB6DB6DB6E g := 3.57142857142857150787e-01 // 5/14 = 0x3FD6DB6DB6DB6DB7 smallest_normal := 2.22507385850720138309e-308 // 2**-1022 = 0x0010000000000000 if x == 0.0 || is_nan(x) || is_inf(x, 0) { return x } mut sign := false if x < 0 { x = -x sign = true } // rough cbrt to 5 bits mut t := f64_from_bits(f64_bits(x) / u64(3) + (u64(b1) << 32)) if x < smallest_normal { // subnormal number t = f64(u64(1) << 54) // set t= 2**54 t *= x t = f64_from_bits(f64_bits(t) / u64(3) + (u64(b2) << 32)) } // new cbrt to 23 bits mut r := t * t / x mut s := c + r * t t *= g + f / (s + e_ + d / s) // chop to 22 bits, make larger than cbrt(x) t = f64_from_bits(f64_bits(t) & (u64(0xffffffffc) << 28) + (u64(1) << 30)) // one step newton iteration to 53 bits with error less than 0.667ulps s = t * t // t*t is exact r = x / s w := t + t r = (r - t) / (w + r) // r-s is exact t = t + t * r // restore the sign bit if sign { t = -t } return t }