// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.

// Module created by Ulises Jeremias Cornejo Fandos based on
// the definitions provided in https://scientificc.github.io/cmathl/

module factorial

import math

// factorial calculates the factorial of the provided value.
pub fn factorial(n f64) f64 {
	// For a large postive argument (n >= FACTORIALS.len) return max_f64

	if n >= factorials_table.len {
		return math.max_f64
	}

	// Otherwise return n!.
	if n == f64(i64(n)) && n >= 0.0 {
		return factorials_table[i64(n)]
	}

	return math.gamma(n + 1.0)
}

// log_factorial calculates the log-factorial of the provided value.
pub fn log_factorial(n f64) f64 {
	// For a large postive argument (n < 0) return max_f64

	if n < 0 {
		return -math.max_f64
	}

	// If n < N then return ln(n!).

	if n != f64(i64(n)) {
		return math.log_gamma(n + 1)
	} else if n < log_factorials_table.len {
		return log_factorials_table[i64(n)]
	}

	// Otherwise return asymptotic expansion of ln(n!).

	return log_factorial_asymptotic_expansion(int(n))
}

fn log_factorial_asymptotic_expansion(n int) f64 {
	m := 6
	mut term := []f64{}
	xx := f64((n + 1) * (n + 1))
	mut xj := f64(n + 1)

	log_factorial := log_sqrt_2pi - xj + (xj - 0.5) * math.log(xj)

	mut i := 0

	for i = 0; i < m; i++ {
		term << b_numbers[i] / xj
		xj *= xx
	}

	mut sum := term[m - 1]

	for i = m - 2; i >= 0; i-- {
		if math.abs(sum) <= math.abs(term[i]) {
			break
		}

		sum = term[i]
	}

	for i >= 0 {
		sum += term[i]
		i--
	}

	return log_factorial + sum
}