// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module main import os import rand import time import gx import gg import sokol.sapp const ( block_size = 20 // pixels field_height = 20 // # of blocks field_width = 10 tetro_size = 4 win_width = block_size * field_width win_height = block_size * field_height timer_period = 250 // ms text_size = 24 limit_thickness = 3 ) const ( text_cfg = gx.TextCfg{ align: .left size: text_size color: gx.rgb(0, 0, 0) } over_cfg = gx.TextCfg{ align: .left size: text_size color: gx.white } ) const ( // Tetros' 4 possible states are encoded in binaries // 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 // 0000 0 0000 0 0000 0 0000 0 0011 3 0011 3 // 0110 6 0010 2 0011 3 0110 6 0001 1 0010 2 // 0110 6 0111 7 0110 6 0011 3 0001 1 0010 2 // There is a special case 1111, since 15 can't be used. b_tetros = [ [66, 66, 66, 66], [27, 131, 72, 232], [36, 231, 36, 231], [63, 132, 63, 132], [311, 17, 223, 74], [322, 71, 113, 47], [1111, 9, 1111, 9], ] // Each tetro has its unique color colors = [ gx.rgb(0, 0, 0), /* unused ? */ gx.rgb(255, 242, 0), /* yellow quad */ gx.rgb(174, 0, 255), /* purple triple */ gx.rgb(60, 255, 0), /* green short topright */ gx.rgb(255, 0, 0), /* red short topleft */ gx.rgb(255, 180, 31), /* orange long topleft */ gx.rgb(33, 66, 255), /* blue long topright */ gx.rgb(74, 198, 255), /* lightblue longest */ gx.rgb(0, 170, 170), /* unused ? */ ] background_color = gx.white ui_color = gx.rgba(255, 0, 0, 210) ) // TODO: type Tetro [tetro_size]struct{ x, y int } struct Block { mut: x int y int } enum GameState { paused running gameover } struct Game { mut: // Score of the current game score int // Lines of the current game lines int // State of the current game state GameState // Position of the current tetro pos_x int pos_y int // field[y][x] contains the color of the block with (x,y) coordinates // "-1" border is to avoid bounds checking. // -1 -1 -1 -1 // -1 0 0 -1 // -1 0 0 -1 // -1 -1 -1 -1 field [][]int // TODO: tetro Tetro tetro []Block // TODO: tetros_cache []Tetro tetros_cache []Block // Index of the current tetro. Refers to its color. tetro_idx int // Idem for the next tetro next_tetro_idx int // Index of the rotation (0-3) rotation_idx int // gg context for drawing gg &gg.Context = voidptr(0) font_loaded bool show_ghost bool // frame/time counters: frame int frame_old int frame_sw time.StopWatch = time.new_stopwatch({}) second_sw time.StopWatch = time.new_stopwatch({}) } [if showfps] fn (mut game Game) showfps() { game.frame++ last_frame_ms := f64(game.frame_sw.elapsed().microseconds()) / 1000.0 ticks := f64(game.second_sw.elapsed().microseconds()) / 1000.0 if ticks > 999.0 { fps := f64(game.frame - game.frame_old) * ticks / 1000.0 $if debug { eprintln('fps: ${fps:5.1f} | last frame took: ${last_frame_ms:6.3f}ms | frame: ${game.frame:6} ') } game.second_sw.restart() game.frame_old = game.frame } } fn frame(mut game Game) { game.frame_sw.restart() game.gg.begin() game.draw_scene() game.showfps() game.gg.end() } fn main() { mut game := &Game{ gg: 0 } mut fpath := os.resource_abs_path(os.join_path('..', 'assets', 'fonts', 'RobotoMono-Regular.ttf')) $if android { fpath = 'fonts/RobotoMono-Regular.ttf' } game.gg = gg.new_context( bg_color: gx.white width: win_width height: win_height use_ortho: true // This is needed for 2D drawing create_window: true window_title: 'V Tetris' // user_data: game frame_fn: frame event_fn: on_event font_path: fpath // wait_events: true ) game.init_game() go game.run() // Run the game loop in a new thread game.gg.run() // Run the render loop in the main thread } fn (mut g Game) init_game() { g.parse_tetros() g.next_tetro_idx = rand.intn(b_tetros.len) // generate initial "next" g.generate_tetro() g.field = [] // Generate the field, fill it with 0's, add -1's on each edge for _ in 0 .. field_height + 2 { mut row := [0].repeat(field_width + 2) row[0] = -1 row[field_width + 1] = -1 g.field << row.clone() } for j in 0 .. field_width + 2 { g.field[0][j] = -1 g.field[field_height + 1][j] = -1 } g.score = 0 g.lines = 0 g.state = .running } fn (mut g Game) parse_tetros() { for b_tetros0 in b_tetros { for b_tetro in b_tetros0 { for t in parse_binary_tetro(b_tetro) { g.tetros_cache << t } } } } fn (mut g Game) run() { for { if g.state == .running { g.move_tetro() g.delete_completed_lines() } // glfw.post_empty_event() // force window redraw time.sleep_ms(timer_period) } } fn (g &Game) draw_ghost() { if g.state != .gameover && g.show_ghost { pos_y := g.move_ghost() for i in 0 .. tetro_size { tetro := g.tetro[i] g.draw_block_color(pos_y + tetro.y, g.pos_x + tetro.x, gx.gray) } } } fn (g Game) move_ghost() int { mut pos_y := g.pos_y mut end := false for !end { for block in g.tetro { y := block.y + pos_y + 1 x := block.x + g.pos_x if g.field[y][x] != 0 { end = true break } } pos_y++ } return pos_y - 1 } fn (mut g Game) move_tetro() bool { // Check each block in current tetro for block in g.tetro { y := block.y + g.pos_y + 1 x := block.x + g.pos_x // Reached the bottom of the screen or another block? if g.field[y][x] != 0 { // The new tetro has no space to drop => end of the game if g.pos_y < 2 { g.state = .gameover return false } // Drop it and generate a new one g.drop_tetro() g.generate_tetro() return false } } g.pos_y++ return true } fn (mut g Game) move_right(dx int) bool { // Reached left/right edge or another tetro? for i in 0 .. tetro_size { tetro := g.tetro[i] y := tetro.y + g.pos_y x := tetro.x + g.pos_x + dx if g.field[y][x] != 0 { // Do not move return false } } g.pos_x += dx return true } fn (mut g Game) delete_completed_lines() { for y := field_height; y >= 1; y-- { g.delete_completed_line(y) } } fn (mut g Game) delete_completed_line(y int) { for x := 1; x <= field_width; x++ { if g.field[y][x] == 0 { return } } g.score += 10 g.lines++ // Move everything down by 1 position for yy := y - 1; yy >= 1; yy-- { for x := 1; x <= field_width; x++ { g.field[yy + 1][x] = g.field[yy][x] } } } // Place a new tetro on top fn (mut g Game) generate_tetro() { g.pos_y = 0 g.pos_x = field_width / 2 - tetro_size / 2 g.tetro_idx = g.next_tetro_idx g.next_tetro_idx = rand.intn(b_tetros.len) g.rotation_idx = 0 g.get_tetro() } // Get the right tetro from cache fn (mut g Game) get_tetro() { idx := g.tetro_idx * tetro_size * tetro_size + g.rotation_idx * tetro_size g.tetro = g.tetros_cache[idx..idx + tetro_size] } // TODO mut fn (mut g Game) drop_tetro() { for i in 0 .. tetro_size { tetro := g.tetro[i] x := tetro.x + g.pos_x y := tetro.y + g.pos_y // Remember the color of each block g.field[y][x] = g.tetro_idx + 1 } } fn (g &Game) draw_tetro() { for i in 0 .. tetro_size { tetro := g.tetro[i] g.draw_block(g.pos_y + tetro.y, g.pos_x + tetro.x, g.tetro_idx + 1) } } fn (g &Game) draw_next_tetro() { if g.state != .gameover { idx := g.next_tetro_idx * tetro_size * tetro_size next_tetro := g.tetros_cache[idx..idx + tetro_size].clone() pos_y := 0 pos_x := field_width / 2 - tetro_size / 2 for i in 0 .. tetro_size { block := next_tetro[i] g.draw_block_color(pos_y + block.y, pos_x + block.x, gx.rgb(220, 220, 220)) } } } fn (g &Game) draw_block_color(i int, j int, color gx.Color) { g.gg.draw_rect(f32((j - 1) * block_size), f32((i - 1) * block_size), f32(block_size - 1), f32(block_size - 1), color) } fn (g &Game) draw_block(i int, j int, color_idx int) { color := if g.state == .gameover { gx.gray } else { colors[color_idx] } g.draw_block_color(i, j, color) } fn (g &Game) draw_field() { for i := 1; i < field_height + 1; i++ { for j := 1; j < field_width + 1; j++ { if g.field[i][j] > 0 { g.draw_block(i, j, g.field[i][j]) } } } } fn (mut g Game) draw_ui() { g.gg.draw_text(1, 3, g.score.str(), text_cfg) lines := g.lines.str() g.gg.draw_text(win_width - lines.len * text_size, 3, lines, text_cfg) if g.state == .gameover { g.gg.draw_rect(0, win_height / 2 - text_size, win_width, 5 * text_size, ui_color) g.gg.draw_text(1, win_height / 2 + 0 * text_size, 'Game Over', over_cfg) g.gg.draw_text(1, win_height / 2 + 2 * text_size, 'Space to restart', over_cfg) } else if g.state == .paused { g.gg.draw_rect(0, win_height / 2 - text_size, win_width, 5 * text_size, ui_color) g.gg.draw_text(1, win_height / 2 + 0 * text_size, 'Game Paused', text_cfg) g.gg.draw_text(1, win_height / 2 + 2 * text_size, 'SPACE to resume', text_cfg) } // g.gg.draw_rect(0, block_size, win_width, limit_thickness, ui_color) } fn (mut g Game) draw_scene() { g.draw_ghost() g.draw_next_tetro() g.draw_tetro() g.draw_field() g.draw_ui() } fn parse_binary_tetro(t_ int) []Block { mut t := t_ mut res := [Block{}].repeat(4) mut cnt := 0 horizontal := t == 9 // special case for the horizontal line ten_powers := [1000, 100, 10, 1] for i := 0; i <= 3; i++ { // Get ith digit of t p := ten_powers[i] mut digit := t / p t %= p // Convert the digit to binary for j := 3; j >= 0; j-- { bin := digit % 2 digit /= 2 if bin == 1 || (horizontal && i == tetro_size - 1) { res[cnt].x = j res[cnt].y = i cnt++ } } } return res } fn on_event(e &sapp.Event, mut game Game) { // println('code=$e.char_code') if e.typ == .key_down { game.key_down(e.key_code) } } fn (mut game Game) key_down(key sapp.KeyCode) { // global keys match key { .escape { exit(0) } .space { if game.state == .running { game.state = .paused } else if game.state == .paused { game.state = .running } else if game.state == .gameover { game.init_game() game.state = .running } } else {} } if game.state != .running { return } // keys while game is running match key { .up { // Rotate the tetro old_rotation_idx := game.rotation_idx game.rotation_idx++ if game.rotation_idx == tetro_size { game.rotation_idx = 0 } game.get_tetro() if !game.move_right(0) { game.rotation_idx = old_rotation_idx game.get_tetro() } if game.pos_x < 0 { // game.pos_x = 1 } } .left { game.move_right(-1) } .right { game.move_right(1) } .down { game.move_tetro() // drop faster when the player presses } .d { for game.move_tetro() { } } .g { game.show_ghost = !game.show_ghost } else {} } }