// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module builtin import strconv /* NB: A V string should be/is immutable from the point of view of V user programs after it is first created. A V string is also slightly larger than the equivalent C string because the V string also has an integer length attached. This tradeoff is made, since V strings are created just *once*, but potentially used *many times* over their lifetime. The V string implementation uses a struct, that has a .str field, which points to a C style 0 terminated memory block. Although not strictly necessary from the V point of view, that additional 0 is *very useful for C interoperability*. The V string implementation also has an integer .len field, containing the length of the .str field, excluding the terminating 0 (just like the C's strlen(s) would do). The 0 ending of .str, and the .len field, mean that in practice: a) a V string s can be used very easily, wherever a C string is needed, just by passing s.str, without a need for further conversion/copying. b) where strlen(s) is needed, you can just pass s.len, without having to constantly recompute the length of s *over and over again* like some C programs do. This is because V strings are immutable and so their length does not change. Ordinary V code *does not need* to be concerned with the additional 0 in the .str field. The 0 *must* be put there by the low level string creating functions inside this module. Failing to do this will lead to programs that work most of the time, when used with pure V functions, but fail in strange ways, when used with modules using C functions (for example os and so on). */ pub struct string { pub: str byteptr // points to a C style 0 terminated string of bytes. len int // the length of the .str field, excluding the ending 0 byte. It is always equal to strlen(.str). is_lit bool } // mut: // hash_cache int pub struct ustring { pub mut: s string runes []int len int } pub fn vstrlen(s byteptr) int { return C.strlen(charptr(s)) } // Converts a C string to a V string. // String data is reused, not copied. pub fn tos(s byteptr, len int) string { // This should never happen. if s == 0 { panic('tos(): nil string') } return string{ str: s len: len } } pub fn tos_clone(s byteptr) string { if s == 0 { panic('tos: nil string') } return tos2(s).clone() } // Same as `tos`, but calculates the length. Called by `string(bytes)` casts. // Used only internally. pub fn tos2(s byteptr) string { if s == 0 { panic('tos2: nil string') } return string{ str: s len: vstrlen(s) } } // Same as `tos2`, but for char*, to avoid warnings pub fn tos3(s charptr) string { if s == 0 { panic('tos3: nil string') } return string{ str: byteptr(s) len: C.strlen(s) } } pub fn tos_lit(s charptr) string { return string{ str: byteptr(s) len: C.strlen(s) is_lit:true } } // string.clone_static returns an independent copy of a given array // It should be used only in -autofree generated code. fn (a string) clone_static() string { return a.clone() } pub fn (a string) clone() string { mut b := string{ len: a.len str: malloc(a.len + 1) } for i in 0..a.len { b.str[i] = a.str[i] } b.str[a.len] = `\0` return b } /* pub fn (s string) cstr() byteptr { clone := s.clone() return clone.str } */ // cstring_to_vstring creates a copy of cstr and turns it into a v string pub fn cstring_to_vstring(cstr byteptr) string { slen := C.strlen(cstr) mut s := byteptr(memdup(cstr, slen + 1)) s[slen] = `\0` return tos(s, slen) } pub fn (s string) replace_once(rep, with string) string { index := s.index(rep) or { return s } return s.substr(0, index) + with + s.substr(index + rep.len, s.len) } pub fn (s string) replace(rep, with string) string { if s.len == 0 || rep.len == 0 { return s } // TODO PERF Allocating ints is expensive. Should be a stack array // Get locations of all reps within this string mut idxs := []int{} mut idx := 0 for { idx = s.index_after(rep, idx) if idx == -1 { break } idxs << idx idx += rep.len } // Dont change the string if there's nothing to replace if idxs.len == 0 { return s } // Now we know the number of replacements we need to do and we can calc the len of the new string new_len := s.len + idxs.len * (with.len - rep.len) mut b := malloc(new_len + 1) // add a newline just in case // Fill the new string mut idx_pos := 0 mut cur_idx := idxs[idx_pos] mut b_i := 0 for i := 0; i < s.len; i++ { if i == cur_idx { // Reached the location of rep, replace it with "with" for j in 0..with.len { b[b_i] = with[j] b_i++ } // Skip the length of rep, since we just replaced it with "with" i += rep.len - 1 // Go to the next index idx_pos++ if idx_pos < idxs.len { cur_idx = idxs[idx_pos] } } else { // Rep doesnt start here, just copy b[b_i] = s[i] b_i++ } } b[new_len] = `\0` return tos(b, new_len) } struct RepIndex { idx int val_idx int } fn compare_rep_index(a, b &RepIndex) int { if a.idx < b.idx { return -1 } if a.idx > b.idx { return 1 } return 0 } fn (a mut []RepIndex) sort() { a.sort_with_compare(compare_rep_index) } // TODO /* fn (a RepIndex) < (b RepIndex) bool { return a.idx < b.idx } */ pub fn (s string) replace_each(vals []string) string { if s.len == 0 || vals.len == 0 { return s } if vals.len % 2 != 0 { println('string.replace_each(): odd number of strings') return s } // `rep` - string to replace // `with` - string to replace with // Remember positions of all rep strings, and calculate the length // of the new string to do just one allocation. mut new_len := s.len mut idxs := []RepIndex{} mut idx := 0 for rep_i := 0; rep_i < vals.len; rep_i += 2 { // vals: ['rep1, 'with1', 'rep2', 'with2'] rep := vals[rep_i] with := vals[rep_i + 1] for { idx = s.index_after(rep, idx) if idx == -1 { break } // We need to remember both the position in the string, // and which rep/with pair it refers to. idxs << RepIndex { idx:idx val_idx:rep_i } idx++ new_len += with.len - rep.len } } // Dont change the string if there's nothing to replace if idxs.len == 0 { return s } idxs.sort() mut b := malloc(new_len + 1) // add a \0 just in case // Fill the new string mut idx_pos := 0 mut cur_idx := idxs[idx_pos] mut b_i := 0 for i := 0; i < s.len; i++ { if i == cur_idx.idx { // Reached the location of rep, replace it with "with" rep := vals[cur_idx.val_idx] with := vals[cur_idx.val_idx + 1] for j in 0..with.len { b[b_i] = with[j] b_i++ } // Skip the length of rep, since we just replaced it with "with" i += rep.len - 1 // Go to the next index idx_pos++ if idx_pos < idxs.len { cur_idx = idxs[idx_pos] } } else { // Rep doesnt start here, just copy b[b_i] = s.str[i] b_i++ } } b[new_len] = `\0` return tos(b, new_len) } pub fn (s string) bool() bool { return s == 'true' || s == 't' // TODO t for pg, remove } pub fn (s string) int() int { return int(strconv.common_parse_int(s, 0, 32, false, false)) } pub fn (s string) i64() i64 { return strconv.common_parse_int(s, 0, 64, false, false) } pub fn (s string) i8() i8 { return i8(strconv.common_parse_int(s, 0, 8, false, false)) } pub fn (s string) i16() i16 { return i16(strconv.common_parse_int(s, 0, 16, false, false)) } pub fn (s string) f32() f32 { // return C.atof(charptr(s.str)) return f32(strconv.atof64(s)) } pub fn (s string) f64() f64 { // return C.atof(charptr(s.str)) return strconv.atof64(s) } pub fn (s string) u16() u16 { return u16(strconv.common_parse_uint(s, 0, 16, false, false)) } pub fn (s string) u32() u32 { return u32(strconv.common_parse_uint(s, 0, 32, false, false)) } pub fn (s string) u64() u64 { return strconv.common_parse_uint(s, 0, 64, false, false) } // == fn (s string) eq(a string) bool { if s.str == 0 { // should never happen panic('string.eq(): nil string') } if s.len != a.len { return false } return C.memcmp(s.str, a.str, a.len) == 0 } // != fn (s string) ne(a string) bool { return !s.eq(a) } // s < a fn (s string) lt(a string) bool { for i in 0..s.len { if i >= a.len || s[i] > a[i] { return false } else if s[i] < a[i] { return true } } if s.len < a.len { return true } return false } // s <= a fn (s string) le(a string) bool { return s.lt(a) || s.eq(a) } // s > a fn (s string) gt(a string) bool { return !s.le(a) } // s >= a fn (s string) ge(a string) bool { return !s.lt(a) } // TODO `fn (s string) + (a string)` ? To be consistent with operator overloading syntax. fn (s string) add(a string) string { new_len := a.len + s.len mut res := string{ len: new_len str: malloc(new_len + 1) } for j in 0..s.len { res.str[j] = s.str[j] } for j in 0..a.len { res.str[s.len + j] = a.str[j] } res.str[new_len] = `\0` // V strings are not null terminated, but just in case return res } pub fn (s string) split(delim string) []string { return s.split_nth(delim, 0) } /* split_nth - splits the string based on the passed `delim` substring. It returns the first Nth parts. When N=0, return all the splits. The last returned element has the remainder of the string, even if the remainder contains more `delim` substrings. */ pub fn (s string) split_nth(delim string, nth int) []string { mut res := []string{} mut i := 0 if delim.len == 0 { i = 1 for ch in s { if nth > 0 && i >= nth { res << s.substr(i, s.len) break } res << ch.str() i++ } return res } mut start := 0 nth_1 := nth - 1 for i <= s.len { mut is_delim := s.str[i] == delim.str[0] mut j := 0 for is_delim && j < delim.len { is_delim = is_delim && s.str[i + j] == delim.str[j] j++ } last := i == s.len - 1 if is_delim || last { if !is_delim && last { i++ } mut val := s.substr(start, i) if val.starts_with(delim) { val = val.right(delim.len) } was_last := nth > 0 && res.len == nth_1 if was_last { res << s.right(start) break } res << val start = i + delim.len } i++ } if s.ends_with(delim) && (nth < 1 || res.len < nth) { res << '' } return res } pub fn (s string) split_into_lines() []string { mut res := []string{} if s.len == 0 { return res } mut start := 0 for i := 0; i < s.len; i++ { is_lf := s.str[i] == `\n` is_crlf := i != s.len - 1 && s.str[i] == `\r` && s.str[i + 1] == `\n` is_eol := is_lf || is_crlf is_last := if is_crlf { i == s.len - 2 } else { i == s.len - 1 } if is_eol || is_last { if is_last && !is_eol { i++ } line := s.substr(start, i) res << line if is_crlf { i++ } start = i + 1 } } return res } // 'hello'.left(2) => 'he' fn (s string) left(n int) string { if n >= s.len { return s } return s.substr(0, n) } // 'hello'.right(2) => 'llo' fn (s string) right(n int) string { if n >= s.len { return '' } return s.substr(n, s.len) } // used internally for [2..4] fn (s string) substr2(start, _end int, end_max bool) string { end := if end_max { s.len } else { _end } return s.substr(start, end) } pub fn (s string) substr(start, end int) string { $if !no_bounds_checking? { if start > end || start > s.len || end > s.len || start < 0 || end < 0 { panic('substr($start, $end) out of bounds (len=$s.len)') } } len := end - start mut res := string{ len: len str: malloc(len + 1) } for i in 0..len { res.str[i] = s.str[start + i] } res.str[len] = `\0` /* res := string { str: s.str + start len: len } */ return res } pub fn (s string) index_old(p string) int { if p.len > s.len || p.len == 0 { return -1 } mut i := 0 for i < s.len { mut j := 0 for j < p.len && s.str[i + j] == p.str[j] { j++ } if j == p.len { return i } i++ } return -1 } pub fn (s string) index(p string) ?int { if p.len > s.len || p.len == 0 { return none } mut i := 0 for i < s.len { mut j := 0 for j < p.len && s.str[i + j] == p.str[j] { j++ } if j == p.len { return i } i++ } return none } // KMP search fn (s string) index_kmp(p string) int { if p.len > s.len { return -1 } mut prefix := [0].repeat(p.len) mut j := 0 for i := 1; i < p.len; i++ { for p.str[j] != p.str[i] && j > 0 { j = prefix[j - 1] } if p.str[j] == p.str[i] { j++ } prefix[i] = j } j = 0 for i in 0..s.len { for p.str[j] != s.str[i] && j > 0 { j = prefix[j - 1] } if p.str[j] == s.str[i] { j++ } if j == p.len { return i - p.len + 1 } } return -1 } pub fn (s string) index_any(chars string) int { for c in chars { index := s.index(c.str()) or { continue } return index } return -1 } pub fn (s string) last_index(p string) ?int { if p.len > s.len || p.len == 0 { return none } mut i := s.len - p.len for i >= 0 { mut j := 0 for j < p.len && s.str[i + j] == p.str[j] { j++ } if j == p.len { return i } i-- } return none } pub fn (s string) index_after(p string, start int) int { if p.len > s.len { return -1 } mut strt := start if start < 0 { strt = 0 } if start >= s.len { return -1 } mut i := strt for i < s.len { mut j := 0 mut ii := i for j < p.len && s.str[ii] == p.str[j] { j++ ii++ } if j == p.len { return i } i++ } return -1 } pub fn (s string) index_byte(c byte) int { for i in 0..s.len { if s.str[i] == c { return i } } return -1 } pub fn (s string) last_index_byte(c byte) int { for i := s.len - 1; i >= 0; i-- { if s.str[i] == c { return i } } return -1 } // counts occurrences of substr in s pub fn (s string) count(substr string) int { if s.len == 0 || substr.len == 0 { return 0 } if substr.len > s.len { return 0 } mut n := 0 mut i := 0 for { i = s.index_after(substr, i) if i == -1 { return n } i += substr.len n++ } return 0 // TODO can never get here - v doesn't know that } pub fn (s string) contains(p string) bool { s.index(p) or { return false } return true } pub fn (s string) starts_with(p string) bool { if p.len > s.len { return false } for i in 0..p.len { if s.str[i] != p.str[i] { return false } } return true } pub fn (s string) ends_with(p string) bool { if p.len > s.len { return false } for i in 0..p.len { if p[i] != s[s.len - p.len + i] { return false } } return true } // TODO only works with ASCII pub fn (s string) to_lower() string { mut b := malloc(s.len + 1) for i in 0..s.len { b[i] = C.tolower(s.str[i]) } return tos(b, s.len) } pub fn (s string) is_lower() bool { for i in 0..s.len { if s[i] >= `A` && s[i] <= `Z` { return false } } return true } pub fn (s string) to_upper() string { mut b := malloc(s.len + 1) for i in 0..s.len { b[i] = C.toupper(s.str[i]) } return tos(b, s.len) } pub fn (s string) is_upper() bool { for i in 0..s.len { if s[i] >= `a` && s[i] <= `z` { return false } } return true } pub fn (s string) capitalize() string { if s.len == 0 { return '' } sl := s.to_lower() cap := sl[0].str().to_upper() + sl.right(1) return cap } pub fn (s string) is_capital() bool { if s.len == 0 || !(s[0] >= `A` && s[0] <= `Z`) { return false } for i in 1..s.len { if s[i] >= `A` && s[i] <= `Z` { return false } } return true } pub fn (s string) title() string { words := s.split(' ') mut tit := []string{} for word in words { tit << word.capitalize() } title := tit.join(' ') return title } pub fn (s string) is_title() bool { words := s.split(' ') for word in words { if !word.is_capital() { return false } } return true } // 'hey [man] how you doin' // find_between('[', ']') == 'man' pub fn (s string) find_between(start, end string) string { start_pos := s.index(start) or { return '' } // First get everything to the right of 'start' val := s.right(start_pos + start.len) end_pos := val.index(end) or { return val } return val.left(end_pos) } // TODO generic fn (ar []string) contains(val string) bool { for s in ar { if s == val { return true } } return false } // TODO generic fn (ar []int) contains(val int) bool { for s in ar { if s == val { return true } } return false } /* pub fn (a []string) to_c() voidptr { mut res := malloc(sizeof(byteptr) * a.len) for i in 0..a.len { val := a[i] res[i] = val.str } return res } */ pub fn (c byte) is_space() bool { // 0x0085 is NEXT LINE (NEL) // 0x00a0 is NO-BREAK SPACE return c in [` `, `\n`, `\t`, `\v`, `\f`, `\r`, 0x85, 0xa0] } pub fn (s string) trim_space() string { return s.trim(' \n\t\v\f\r') } pub fn (s string) trim(cutset string) string { if s.len < 1 || cutset.len < 1 { return s } cs_arr := cutset.bytes() mut pos_left := 0 mut pos_right := s.len - 1 mut cs_match := true for pos_left <= s.len && pos_right >= -1 && cs_match { cs_match = false if s[pos_left] in cs_arr { pos_left++ cs_match = true } if s[pos_right] in cs_arr { pos_right-- cs_match = true } if pos_left > pos_right { return '' } } return s.substr(pos_left, pos_right + 1) } pub fn (s string) trim_left(cutset string) string { if s.len < 1 || cutset.len < 1 { return s } cs_arr := cutset.bytes() mut pos := 0 for pos < s.len && s[pos] in cs_arr { pos++ } return s.right(pos) } pub fn (s string) trim_right(cutset string) string { if s.len < 1 || cutset.len < 1 { return s } cs_arr := cutset.bytes() mut pos := s.len - 1 for pos >= 0 && s[pos] in cs_arr { pos-- } return if pos < 0 { '' } else { s.left(pos + 1) } } pub fn (s string) trim_prefix(str string) string { if s.starts_with(str) { return s.replace(str, "") } return s } pub fn (s string) trim_suffix(str string) string { if s.ends_with(str) { return s.replace(str, "") } return s } // fn print_cur_thread() { // //C.printf("tid = %08x \n", pthread_self()); // } fn compare_strings(a, b &string) int { if a.lt(b) { return -1 } if a.gt(b) { return 1 } return 0 } fn compare_strings_by_len(a, b &string) int { if a.len < b.len { return -1 } if a.len > b.len { return 1 } return 0 } fn compare_lower_strings(a, b &string) int { aa := a.to_lower() bb := b.to_lower() return compare_strings(aa, bb) } pub fn (s mut []string) sort() { s.sort_with_compare(compare_strings) } pub fn (s mut []string) sort_ignore_case() { s.sort_with_compare(compare_lower_strings) } pub fn (s mut []string) sort_by_len() { s.sort_with_compare(compare_strings_by_len) } pub fn (s string) str() string { return s } pub fn (s ustring) str() string { return s.s } pub fn (s string) ustring() ustring { mut res := ustring{ s: s // runes will have at least s.len elements, save reallocations // TODO use VLA for small strings? runes: __new_array(0, s.len, sizeof(int)) } for i := 0; i < s.len; i++ { char_len := utf8_char_len(s.str[i]) res.runes << i i += char_len - 1 res.len++ } return res } // A hack that allows to create ustring without allocations. // It's called from functions like draw_text() where we know that the string is going to be freed // right away. Uses global buffer for storing runes []int array. __global g_ustring_runes []int pub fn (s string) ustring_tmp() ustring { if g_ustring_runes.len == 0 { g_ustring_runes = __new_array(0, 128, sizeof(int)) } mut res := ustring{ s: s } res.runes = g_ustring_runes res.runes.len = s.len mut j := 0 for i := 0; i < s.len; i++ { char_len := utf8_char_len(s.str[i]) res.runes[j] = i j++ i += char_len - 1 res.len++ } return res } fn (u ustring) eq(a ustring) bool { if u.len != a.len || u.s != a.s { return false } return true } fn (u ustring) ne(a ustring) bool { return !u.eq(a) } fn (u ustring) lt(a ustring) bool { return u.s < a.s } fn (u ustring) le(a ustring) bool { return u.lt(a) || u.eq(a) } fn (u ustring) gt(a ustring) bool { return !u.le(a) } fn (u ustring) ge(a ustring) bool { return !u.lt(a) } pub fn (u ustring) add(a ustring) ustring { mut res := ustring{ s: u.s + a.s runes: __new_array(0, u.s.len + a.s.len, sizeof(int)) } mut j := 0 for i := 0; i < u.s.len; i++ { char_len := utf8_char_len(u.s.str[i]) res.runes << j i += char_len - 1 j += char_len res.len++ } for i := 0; i < a.s.len; i++ { char_len := utf8_char_len(a.s.str[i]) res.runes << j i += char_len - 1 j += char_len res.len++ } return res } pub fn (u ustring) index_after(p ustring, start int) int { if p.len > u.len { return -1 } mut strt := start if start < 0 { strt = 0 } if start > u.len { return -1 } mut i := strt for i < u.len { mut j := 0 mut ii := i for j < p.len && u.at(ii) == p.at(j) { j++ ii++ } if j == p.len { return i } i++ } return -1 } // counts occurrences of substr in s pub fn (u ustring) count(substr ustring) int { if u.len == 0 || substr.len == 0 { return 0 } if substr.len > u.len { return 0 } mut n := 0 mut i := 0 for { i = u.index_after(substr, i) if i == -1 { return n } i += substr.len n++ } return 0 // TODO can never get here - v doesn't know that } pub fn (u ustring) substr(_start, _end int) string { $if !no_bounds_checking? { if _start > _end || _start > u.len || _end > u.len || _start < 0 || _end < 0 { panic('substr($_start, $_end) out of bounds (len=$u.len)') } } end := if _end >= u.len { u.s.len } else { u.runes[_end] } return u.s.substr(u.runes[_start], end) } pub fn (u ustring) left(pos int) string { if pos >= u.len { return u.s } return u.substr(0, pos) } pub fn (u ustring) right(pos int) string { if pos >= u.len { return '' } return u.substr(pos, u.len) } fn (s string) at(idx int) byte { $if !no_bounds_checking? { if idx < 0 || idx >= s.len { panic('string index out of range: $idx / $s.len') } } return s.str[idx] } pub fn (u ustring) at(idx int) string { $if !no_bounds_checking? { if idx < 0 || idx >= u.len { panic('string index out of range: $idx / $u.runes.len') } } return u.substr(idx, idx + 1) } fn (u &ustring) free() { u.runes.free() } pub fn (c byte) is_digit() bool { return c >= `0` && c <= `9` } pub fn (c byte) is_hex_digit() bool { return c.is_digit() || (c >= `a` && c <= `f`) || (c >= `A` && c <= `F`) } pub fn (c byte) is_oct_digit() bool { return c >= `0` && c <= `7` } pub fn (c byte) is_bin_digit() bool { return c == `0` || c == `1` } pub fn (c byte) is_letter() bool { return (c >= `a` && c <= `z`) || (c >= `A` && c <= `Z`) } pub fn (s &string) free() { if s.is_lit {return} free(s.str) } // all_before('23:34:45.234', '.') == '23:34:45' pub fn (s string) all_before(dot string) string { pos := s.index(dot) or { return s } return s.left(pos) } pub fn (s string) all_before_last(dot string) string { pos := s.last_index(dot) or { return s } return s.left(pos) } pub fn (s string) all_after(dot string) string { pos := s.last_index(dot) or { return s } return s.right(pos + dot.len) } pub fn (s string) after(dot string) string { return s.all_after(dot) } // fn (s []string) substr(a, b int) string { // return join_strings(s.slice_fast(a, b)) // } pub fn (a []string) join(del string) string { if a.len == 0 { return '' } mut len := 0 for val in a { len += val.len + del.len } len -= del.len // Allocate enough memory mut res := '' res.len = len res.str = malloc(res.len + 1) mut idx := 0 // Go thru every string and copy its every char one by one for i, val in a { for j in 0..val.len { res.str[idx] = val.str[j] idx++ } // Add del if it's not last if i != a.len - 1 { for k in 0..del.len { res.str[idx] = del.str[k] idx++ } } } res.str[res.len] = `\0` return res } pub fn (s []string) join_lines() string { return s.join('\n') } // reverse will return a new reversed string. pub fn (s string) reverse() string { if s.len == 0 || s.len == 1 { return s } mut res := string{ len: s.len str: malloc(s.len) } for i := s.len - 1; i >= 0; i-- { res.str[s.len - i - 1] = s[i] } return res } // limit returns a portion of the string, starting at `0` and extending for a given number of characters afterward. // 'hello'.limit(2) => 'he' // 'hi'.limit(10) => 'hi' pub fn (s string) limit(max int) string { u := s.ustring() if u.len <= max { return s } return u.substr(0, max) } [deprecated] pub fn (c byte) is_white() bool { panic('Use `string.is_space` instead of `string.is_white') } pub fn (s string) hash() int { // mut h := s.hash_cache mut h := 0 if h == 0 && s.len > 0 { for c in s { h = h * 31 + int(c) } } return h } pub fn (s string) bytes() []byte { if s.len == 0 { return [] } mut buf := [byte(0)].repeat(s.len) C.memcpy(buf.data, s.str, s.len) return buf } // repeat returns a new string with a specified number of copies of the string it was called on. pub fn (s string) repeat(count int) string { if count < 0 { panic('string.repeat: count is negative: $count') } else if count == 0 { return '' } else if count == 1 { return s } mut ret := malloc(s.len * count + 1) for i in 0 .. count { for j in 0 .. s.len { ret[i * s.len + j] = s[j] } } ret[s.len * count] = 0 return string(ret) } // Allows multi-line strings to be formatted in a way that removes white-space // before a delimeter. by default `|` is used. // Note: the delimiter has to be a byte at this time. That means surrounding // the value in ``. // // Example: // st := 'Hello there, // |this is a string, // | Everything before the first | is removed'.strip_margin() // Returns: // Hello there, // this is a string, // Everything before the first | is removed pub fn (s string) strip_margin() string { return s.strip_margin_custom(`|`) } pub fn (s string) strip_margin_custom(del byte) string { mut sep := del if sep.is_space() { eprintln("Warning: `strip_margin` cannot use white-space as a delimiter") eprintln(" Defaulting to `|`") sep = `|` } // don't know how much space the resulting string will be, but the max it // can be is this big mut ret := malloc(s.len + 1) mut count := 0 for i := 0; i < s.len; i++ { if s[i] in [`\n`, `\r`] { ret[count] = s[i] count++ // CRLF if s[i] == `\r` && i < s.len - 1 && s[i+1] == `\n` { ret[count] = s[i+1] count++ i++ } for s[i] != sep { i++ if i >= s.len { break } } } else { ret[count] = s[i] count++ } } ret[count] = 0 return string(ret) }