// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module builtin import strings // array is a struct used for denoting array types in V pub struct array { pub: element_size int // size in bytes of one element in the array. pub mut: data voidptr offset int // in bytes (should be `size_t`) len int // length of the array. cap int // capacity of the array. } // array.data uses a void pointer, which allows implementing arrays without generics and without generating // extra code for every type. // Internal function, used by V (`nums := []int`) fn __new_array(mylen int, cap int, elm_size int) array { cap_ := if cap < mylen { mylen } else { cap } arr := array{ element_size: elm_size data: vcalloc(cap_ * elm_size) len: mylen cap: cap_ } return arr } fn __new_array_with_default(mylen int, cap int, elm_size int, val voidptr) array { cap_ := if cap < mylen { mylen } else { cap } mut arr := array{ element_size: elm_size data: vcalloc(cap_ * elm_size) len: mylen cap: cap_ } if val != 0 { for i in 0 .. arr.len { unsafe { arr.set_unsafe(i, val) } } } return arr } fn __new_array_with_array_default(mylen int, cap int, elm_size int, val array) array { cap_ := if cap < mylen { mylen } else { cap } mut arr := array{ element_size: elm_size data: vcalloc(cap_ * elm_size) len: mylen cap: cap_ } for i in 0 .. arr.len { val_clone := val.clone() unsafe { arr.set_unsafe(i, &val_clone) } } return arr } // Private function, used by V (`nums := [1, 2, 3]`) fn new_array_from_c_array(len int, cap int, elm_size int, c_array voidptr) array { cap_ := if cap < len { len } else { cap } arr := array{ element_size: elm_size data: vcalloc(cap_ * elm_size) len: len cap: cap_ } // TODO Write all memory functions (like memcpy) in V unsafe { C.memcpy(arr.data, c_array, len * elm_size) } return arr } // Private function, used by V (`nums := [1, 2, 3] !`) fn new_array_from_c_array_no_alloc(len int, cap int, elm_size int, c_array voidptr) array { arr := array{ element_size: elm_size data: c_array len: len cap: cap } return arr } // Private function. Doubles array capacity if needed. fn (mut a array) ensure_cap(required int) { if required <= a.cap { return } mut cap := if a.cap > 0 { a.cap } else { 2 } for required > cap { cap *= 2 } new_size := cap * a.element_size new_data := vcalloc(new_size) if a.data != voidptr(0) { unsafe { C.memcpy(new_data, a.data, a.len * a.element_size) } // TODO: the old data may be leaked when no GC is used (ref-counting?) } a.data = new_data a.offset = 0 a.cap = cap } // repeat returns a new array with the given array elements repeated given times. // `cgen` will replace this with an apropriate call to `repeat_to_depth()` // This is a dummy placeholder that will be overridden by `cgen` with an appropriate // call to `repeat_to_depth()`. However the `checker` needs it here. pub fn (a array) repeat(count int) array { return unsafe { a.repeat_to_depth(count, 0) } } // version of `repeat()` that handles multi dimensional arrays // `unsafe` to call directly because `depth` is not checked [unsafe] pub fn (a array) repeat_to_depth(count int, depth int) array { if count < 0 { panic('array.repeat: count is negative: $count') } mut size := count * a.len * a.element_size if size == 0 { size = a.element_size } arr := array{ element_size: a.element_size data: vcalloc(size) len: count * a.len cap: count * a.len } if a.len > 0 { for i in 0 .. count { if depth > 0 { ary_clone := unsafe { a.clone_to_depth(depth) } unsafe { C.memcpy(arr.get_unsafe(i * a.len), &byte(ary_clone.data), a.len * a.element_size) } } else { unsafe { C.memcpy(arr.get_unsafe(i * a.len), &byte(a.data), a.len * a.element_size) } } } } return arr } // sort_with_compare sorts array in-place using given `compare` function as comparator. pub fn (mut a array) sort_with_compare(compare voidptr) { $if freestanding { panic('sort does not work with -freestanding') } $else { C.qsort(mut a.data, a.len, a.element_size, compare) } } // insert inserts a value in the array at index `i` pub fn (mut a array) insert(i int, val voidptr) { $if !no_bounds_checking ? { if i < 0 || i > a.len { panic('array.insert: index out of range (i == $i, a.len == $a.len)') } } a.ensure_cap(a.len + 1) unsafe { C.memmove(a.get_unsafe(i + 1), a.get_unsafe(i), (a.len - i) * a.element_size) a.set_unsafe(i, val) } a.len++ } // insert_many inserts many values into the array from index `i`. [unsafe] pub fn (mut a array) insert_many(i int, val voidptr, size int) { $if !no_bounds_checking ? { if i < 0 || i > a.len { panic('array.insert_many: index out of range (i == $i, a.len == $a.len)') } } a.ensure_cap(a.len + size) elem_size := a.element_size unsafe { iptr := a.get_unsafe(i) C.memmove(a.get_unsafe(i + size), iptr, (a.len - i) * elem_size) C.memcpy(iptr, val, size * elem_size) } a.len += size } // prepend prepends one value to the array. pub fn (mut a array) prepend(val voidptr) { a.insert(0, val) } // prepend_many prepends another array to this array. [unsafe] pub fn (mut a array) prepend_many(val voidptr, size int) { unsafe { a.insert_many(0, val, size) } } // delete deletes array element at index `i`. pub fn (mut a array) delete(i int) { a.delete_many(i, 1) } // delete_many deletes `size` elements beginning with index `i` pub fn (mut a array) delete_many(i int, size int) { $if !no_bounds_checking ? { if i < 0 || i + size > a.len { endidx := if size > 1 { '..${i + size}' } else { '' } panic('array.delete: index out of range (i == $i$endidx, a.len == $a.len)') } } // NB: if a is [12,34], a.len = 2, a.delete(0) // should move (2-0-1) elements = 1 element (the 34) forward old_data := a.data new_size := a.len - size new_cap := if new_size == 0 { 1 } else { new_size } a.data = vcalloc(new_cap * a.element_size) unsafe { C.memcpy(a.data, old_data, i * a.element_size) } unsafe { C.memcpy(&byte(a.data) + i * a.element_size, &byte(old_data) + (i + size) * a.element_size, (a.len - i - size) * a.element_size) } a.len = new_size a.cap = new_cap } // clear clears the array without deallocating the allocated data. pub fn (mut a array) clear() { a.len = 0 } // trim trims the array length to "index" without modifying the allocated data. If "index" is greater // than len nothing will be changed. pub fn (mut a array) trim(index int) { if index < a.len { a.len = index } } // we manually inline this for single operations for performance without -prod [inline; unsafe] fn (a array) get_unsafe(i int) voidptr { unsafe { return &byte(a.data) + i * a.element_size } } // Private function. Used to implement array[] operator. fn (a array) get(i int) voidptr { $if !no_bounds_checking ? { if i < 0 || i >= a.len { panic('array.get: index out of range (i == $i, a.len == $a.len)') } } unsafe { return &byte(a.data) + i * a.element_size } } // Private function. Used to implement x = a[i] or { ... } fn (a array) get_with_check(i int) voidptr { if i < 0 || i >= a.len { return 0 } unsafe { return &byte(a.data) + i * a.element_size } } // first returns the first element of the array. pub fn (a array) first() voidptr { $if !no_bounds_checking ? { if a.len == 0 { panic('array.first: array is empty') } } return a.data } // last returns the last element of the array. pub fn (a array) last() voidptr { $if !no_bounds_checking ? { if a.len == 0 { panic('array.last: array is empty') } } unsafe { return &byte(a.data) + (a.len - 1) * a.element_size } } // pop returns the last element of the array, and removes it. pub fn (mut a array) pop() voidptr { // in a sense, this is the opposite of `a << x` $if !no_bounds_checking ? { if a.len == 0 { panic('array.pop: array is empty') } } new_len := a.len - 1 last_elem := unsafe { &byte(a.data) + new_len * a.element_size } a.len = new_len // NB: a.cap is not changed here *on purpose*, so that // further << ops on that array will be more efficient. return unsafe { memdup(last_elem, a.element_size) } } // delete_last efficiently deletes the last element of the array. pub fn (mut a array) delete_last() { // copy pasting code for performance $if !no_bounds_checking ? { if a.len == 0 { panic('array.pop: array is empty') } } a.len-- } // slice returns an array using the same buffer as original array // but starting from the `start` element and ending with the element before // the `end` element of the original array with the length and capacity // set to the number of the elements in the slice. fn (a array) slice(start int, _end int) array { mut end := _end $if !no_bounds_checking ? { if start > end { panic('array.slice: invalid slice index ($start > $end)') } if end > a.len { panic('array.slice: slice bounds out of range ($end >= $a.len)') } if start < 0 { panic('array.slice: slice bounds out of range ($start < 0)') } } offset := start * a.element_size data := unsafe { &byte(a.data) + offset } l := end - start res := array{ element_size: a.element_size data: data offset: a.offset + offset len: l cap: l } return res } // used internally for [2..4] fn (a array) slice2(start int, _end int, end_max bool) array { end := if end_max { a.len } else { _end } return a.slice(start, end) } // `clone_static_to_depth()` returns an independent copy of a given array. // Unlike `clone_to_depth()` it has a value receiver and is used internally // for slice-clone expressions like `a[2..4].clone()` and in -autofree generated code. fn (a array) clone_static_to_depth(depth int) array { return unsafe { a.clone_to_depth(depth) } } // clone returns an independent copy of a given array. // this will be overwritten by `cgen` with an apropriate call to `.clone_to_depth()` // However the `checker` needs it here. pub fn (a &array) clone() array { return unsafe { a.clone_to_depth(0) } } // recursively clone given array - `unsafe` when called directly because depth is not checked [unsafe] pub fn (a &array) clone_to_depth(depth int) array { mut size := a.cap * a.element_size if size == 0 { size++ } mut arr := array{ element_size: a.element_size data: vcalloc(size) len: a.len cap: a.cap } // Recursively clone-generated elements if array element is array type if depth > 0 { for i in 0 .. a.len { ar := array{} unsafe { C.memcpy(&ar, a.get_unsafe(i), int(sizeof(array))) } ar_clone := unsafe { ar.clone_to_depth(depth - 1) } unsafe { arr.set_unsafe(i, &ar_clone) } } return arr } else { if !isnil(a.data) { unsafe { C.memcpy(&byte(arr.data), a.data, a.cap * a.element_size) } } return arr } } // we manually inline this for single operations for performance without -prod [inline; unsafe] fn (mut a array) set_unsafe(i int, val voidptr) { unsafe { C.memcpy(&byte(a.data) + a.element_size * i, val, a.element_size) } } // Private function. Used to implement assigment to the array element. fn (mut a array) set(i int, val voidptr) { $if !no_bounds_checking ? { if i < 0 || i >= a.len { panic('array.set: index out of range (i == $i, a.len == $a.len)') } } unsafe { C.memcpy(&byte(a.data) + a.element_size * i, val, a.element_size) } } fn (mut a array) push(val voidptr) { a.ensure_cap(a.len + 1) unsafe { C.memmove(&byte(a.data) + a.element_size * a.len, val, a.element_size) } a.len++ } // push_many implements the functionality for pushing another array. // `val` is array.data and user facing usage is `a << [1,2,3]` [unsafe] pub fn (mut a3 array) push_many(val voidptr, size int) { if a3.data == val && !isnil(a3.data) { // handle `arr << arr` copy := a3.clone() a3.ensure_cap(a3.len + size) unsafe { // C.memcpy(a.data, copy.data, copy.element_size * copy.len) C.memcpy(a3.get_unsafe(a3.len), copy.data, a3.element_size * size) } } else { a3.ensure_cap(a3.len + size) if !isnil(a3.data) && !isnil(val) { unsafe { C.memcpy(a3.get_unsafe(a3.len), val, a3.element_size * size) } } } a3.len += size } // reverse_in_place reverses existing array data, modifying original array. pub fn (mut a array) reverse_in_place() { if a.len < 2 { return } unsafe { mut tmp_value := malloc(a.element_size) for i in 0 .. a.len / 2 { C.memcpy(tmp_value, &byte(a.data) + i * a.element_size, a.element_size) C.memcpy(&byte(a.data) + i * a.element_size, &byte(a.data) + (a.len - 1 - i) * a.element_size, a.element_size) C.memcpy(&byte(a.data) + (a.len - 1 - i) * a.element_size, tmp_value, a.element_size) } free(tmp_value) } } // reverse returns a new array with the elements of the original array in reverse order. pub fn (a array) reverse() array { if a.len < 2 { return a } mut arr := array{ element_size: a.element_size data: vcalloc(a.cap * a.element_size) len: a.len cap: a.cap } for i in 0 .. a.len { unsafe { arr.set_unsafe(i, a.get_unsafe(a.len - 1 - i)) } } return arr } // pub fn (a []int) free() { // free frees all memory occupied by the array. [unsafe] pub fn (a &array) free() { $if prealloc { return } // if a.is_slice { // return // } unsafe { free(&byte(a.data) - a.offset) } } [unsafe] pub fn (mut a []string) free() { $if prealloc { return } for s in a { unsafe { s.free() } } unsafe { free(a.data) } } // str returns a string representation of the array of strings // => '["a", "b", "c"]'. [manualfree] pub fn (a []string) str() string { mut sb := strings.new_builder(a.len * 3) sb.write_string('[') for i in 0 .. a.len { val := a[i] sb.write_string("'") sb.write_string(val) sb.write_string("'") if i < a.len - 1 { sb.write_string(', ') } } sb.write_string(']') res := sb.str() unsafe { sb.free() } return res } // hex returns a string with the hexadecimal representation // of the byte elements of the array. pub fn (b []byte) hex() string { mut hex := unsafe { malloc(b.len * 2 + 1) } mut dst_i := 0 for i in b { n0 := i >> 4 unsafe { hex[dst_i] = if n0 < 10 { n0 + `0` } else { n0 + byte(87) } dst_i++ } n1 := i & 0xF unsafe { hex[dst_i] = if n1 < 10 { n1 + `0` } else { n1 + byte(87) } dst_i++ } } unsafe { hex[dst_i] = 0 return tos(hex, dst_i) } } // copy copies the `src` byte array elements to the `dst` byte array. // The number of the elements copied is the minimum of the length of both arrays. // Returns the number of elements copied. // TODO: implement for all types pub fn copy(dst []byte, src []byte) int { min := if dst.len < src.len { dst.len } else { src.len } if min > 0 { unsafe { C.memcpy(&byte(dst.data), src.data, min) } } return min } // Private function. Comparator for int type. fn compare_ints(a &int, b &int) int { if *a < *b { return -1 } if *a > *b { return 1 } return 0 } fn compare_ints_reverse(a &int, b &int) int { if *a > *b { return -1 } if *a < *b { return 1 } return 0 } // sort sorts an array of int in place in ascending order. pub fn (mut a []int) sort() { a.sort_with_compare(compare_ints) } // index returns the first index at which a given element can be found in the array // or -1 if the value is not found. [direct_array_access] pub fn (a []string) index(v string) int { for i in 0 .. a.len { if a[i] == v { return i } } return -1 } // reduce executes a given reducer function on each element of the array, // resulting in a single output value. pub fn (a []int) reduce(iter fn (int, int) int, accum_start int) int { mut accum_ := accum_start for i in a { accum_ = iter(accum_, i) } return accum_ } // grow_cap grows the array's capacity by `amount` elements. pub fn (mut a array) grow_cap(amount int) { a.ensure_cap(a.cap + amount) } // grow_len ensures that an array has a.len + amount of length [unsafe] pub fn (mut a array) grow_len(amount int) { a.ensure_cap(a.len + amount) a.len += amount } // eq checks if the arrays have the same elements or not. // TODO: make it work with all types. pub fn (a1 []string) eq(a2 []string) bool { // return array_eq(a, a2) if a1.len != a2.len { return false } size_of_string := int(sizeof(string)) for i in 0 .. a1.len { offset := i * size_of_string s1 := unsafe { &string(&byte(a1.data) + offset) } s2 := unsafe { &string(&byte(a2.data) + offset) } if *s1 != *s2 { return false } } return true } // pointers returns a new array, where each element // is the address of the corresponding element in the array. [unsafe] pub fn (a array) pointers() []voidptr { mut res := []voidptr{} for i in 0 .. a.len { unsafe { res << a.get_unsafe(i) } } return res } // voidptr.vbytes() - makes a V []byte structure from a C style memory buffer. NB: the data is reused, NOT copied! [unsafe] pub fn (data voidptr) vbytes(len int) []byte { res := array{ element_size: 1 data: data len: len cap: len } return res } // byteptr.vbytes() - makes a V []byte structure from a C style memory buffer. NB: the data is reused, NOT copied! [unsafe] pub fn (data &byte) vbytes(len int) []byte { return unsafe { voidptr(data).vbytes(len) } }