module net import time const ( udp_default_read_timeout = time.second / 10 udp_default_write_timeout = time.second / 10 ) struct UdpSocket { Socket l Addr // TODO(emily): replace with option again // when i figure out how to coerce it properly mut: has_r bool r Addr } pub struct UdpConn { pub mut: sock UdpSocket mut: write_deadline time.Time read_deadline time.Time read_timeout time.Duration write_timeout time.Duration } pub fn dial_udp(raddr string) ?&UdpConn { addrs := resolve_addrs_fuzzy(raddr, .udp)? for addr in addrs { // create a local socket for this // bind to any port (or file) (we dont care in this // case because we only care about the remote) if sock := new_udp_socket_for_remote(addr) { return &UdpConn{ sock: sock read_timeout: net.udp_default_read_timeout write_timeout: net.udp_default_write_timeout } } } return none } // pub fn dial_udp(laddr string, raddr string) ?&UdpConn { // local := resolve_addr(laddr, .inet, .udp)? // sbase := new_udp_socket()? // sock := UdpSocket{ // handle: sbase.handle // l: local // r: resolve_wrapper(raddr) // } // } pub fn (mut c UdpConn) write_ptr(b &u8, len int) ?int { remote := c.sock.remote() or { return err_no_udp_remote } return c.write_to_ptr(remote, b, len) } pub fn (mut c UdpConn) write(buf []u8) ?int { return c.write_ptr(buf.data, buf.len) } pub fn (mut c UdpConn) write_string(s string) ?int { return c.write_ptr(s.str, s.len) } pub fn (mut c UdpConn) write_to_ptr(addr Addr, b &u8, len int) ?int { res := C.sendto(c.sock.handle, b, len, 0, voidptr(&addr), addr.len()) if res >= 0 { return res } code := error_code() if code == int(error_ewouldblock) { c.wait_for_write()? socket_error(C.sendto(c.sock.handle, b, len, 0, voidptr(&addr), addr.len()))? } else { wrap_error(code)? } return none } // write_to blocks and writes the buf to the remote addr specified pub fn (mut c UdpConn) write_to(addr Addr, buf []u8) ?int { return c.write_to_ptr(addr, buf.data, buf.len) } // write_to_string blocks and writes the buf to the remote addr specified pub fn (mut c UdpConn) write_to_string(addr Addr, s string) ?int { return c.write_to_ptr(addr, s.str, s.len) } // read reads from the socket into buf up to buf.len returning the number of bytes read pub fn (mut c UdpConn) read(mut buf []u8) ?(int, Addr) { mut addr := Addr{ addr: AddrData{ Ip6: Ip6{} } } len := sizeof(Addr) mut res := wrap_read_result(C.recvfrom(c.sock.handle, voidptr(buf.data), buf.len, 0, voidptr(&addr), &len))? if res > 0 { return res, addr } code := error_code() if code == int(error_ewouldblock) { c.wait_for_read()? // same setup as in tcp res = wrap_read_result(C.recvfrom(c.sock.handle, voidptr(buf.data), buf.len, 0, voidptr(&addr), &len))? res2 := socket_error(res)? return res2, addr } else { wrap_error(code)? } return none } pub fn (c &UdpConn) read_deadline() ?time.Time { if c.read_deadline.unix == 0 { return c.read_deadline } return none } pub fn (mut c UdpConn) set_read_deadline(deadline time.Time) { c.read_deadline = deadline } pub fn (c &UdpConn) write_deadline() ?time.Time { if c.write_deadline.unix == 0 { return c.write_deadline } return none } pub fn (mut c UdpConn) set_write_deadline(deadline time.Time) { c.write_deadline = deadline } pub fn (c &UdpConn) read_timeout() time.Duration { return c.read_timeout } pub fn (mut c UdpConn) set_read_timeout(t time.Duration) { c.read_timeout = t } pub fn (c &UdpConn) write_timeout() time.Duration { return c.write_timeout } pub fn (mut c UdpConn) set_write_timeout(t time.Duration) { c.write_timeout = t } [inline] pub fn (mut c UdpConn) wait_for_read() ? { return wait_for_read(c.sock.handle, c.read_deadline, c.read_timeout) } [inline] pub fn (mut c UdpConn) wait_for_write() ? { return wait_for_write(c.sock.handle, c.write_deadline, c.write_timeout) } pub fn (c &UdpConn) str() string { // TODO return 'UdpConn' } pub fn (mut c UdpConn) close() ? { return c.sock.close() } pub fn listen_udp(laddr string) ?&UdpConn { addrs := resolve_addrs_fuzzy(laddr, .udp)? // TODO(emily): // here we are binding to the first address // and that is probably not ideal addr := addrs[0] return &UdpConn{ sock: new_udp_socket(addr)? read_timeout: net.udp_default_read_timeout write_timeout: net.udp_default_write_timeout } } fn new_udp_socket(local_addr Addr) ?&UdpSocket { family := local_addr.family() sockfd := socket_error(C.socket(family, SocketType.udp, 0))? mut s := &UdpSocket{ handle: sockfd l: local_addr r: Addr{ addr: AddrData{ Ip6: Ip6{} } } } s.set_option_bool(.reuse_addr, true)? if family == .ip6 { s.set_dualstack(true)? } $if !net_blocking_sockets ? { // NOTE: refer to comments in tcp.v $if windows { t := u32(1) // true socket_error(C.ioctlsocket(sockfd, fionbio, &t))? } $else { socket_error(C.fcntl(sockfd, C.F_SETFD, C.O_NONBLOCK))? } } // cast to the correct type socket_error(C.bind(s.handle, voidptr(&local_addr), local_addr.len()))? return s } fn new_udp_socket_for_remote(raddr Addr) ?&UdpSocket { // Invent a sutible local address for this remote addr // Appease compiler mut addr := Addr{ addr: AddrData{ Ip6: Ip6{} } } match raddr.family() { .ip { // Use ip dualstack addr = new_ip(0, addr_ip_any) } .ip6 { // Use ip6 dualstack addr = new_ip6(0, addr_ip6_any) } .unix { addr = temp_unix()? } else { panic('Invalid family') } } mut sock := new_udp_socket(addr)? sock.has_r = true sock.r = raddr return sock } pub fn (mut s UdpSocket) set_option_bool(opt SocketOption, value bool) ? { // TODO reenable when this `in` operation works again // if opt !in opts_can_set { // return err_option_not_settable // } // if opt !in opts_bool { // return err_option_wrong_type // } x := int(value) socket_error(C.setsockopt(s.handle, C.SOL_SOCKET, int(opt), &x, sizeof(int)))? } pub fn (mut s UdpSocket) set_dualstack(on bool) ? { x := int(!on) socket_error(C.setsockopt(s.handle, C.IPPROTO_IPV6, int(SocketOption.ipv6_only), &x, sizeof(int)))? } fn (mut s UdpSocket) close() ? { return shutdown(s.handle) } fn (mut s UdpSocket) @select(test Select, timeout time.Duration) ?bool { return @select(s.handle, test, timeout) } fn (s &UdpSocket) remote() ?Addr { if s.has_r { return s.r } return none }