module builtin enum SigIndex { si_signo = 0x00 si_code = 0x02 si_pid = 0x04 si_uid = 0x05 si_status = 0x06 si_size = 0x80 } enum Signo { sighup = 1 // Hangup. sigint = 2 // Interactive attention signal. sigquit = 3 // Quit. sigill = 4 // Illegal instruction. sigtrap = 5 // Trace/breakpoint trap. sigabrt = 6 // Abnormal termination. sigbus = 7 sigfpe = 8 // Erroneous arithmetic operation. sigkill = 9 // Killed. sigusr1 = 10 sigsegv = 11 // Invalid access to memory. sigusr2 = 12 sigpipe = 13 // Broken pipe. sigalrm = 14 // Alarm clock. sigterm = 15 // Termination request. sigstkflt = 16 sigchld = 17 sigcont = 18 sigstop = 19 sigtstp = 20 sigttin = 21 // Background read from control terminal. sigttou = 22 // Background write to control terminal. sigurg = 23 sigxcpu = 24 // CPU time limit exceeded. sigxfsz = 25 // File size limit exceeded. sigvtalrm = 26 // Virtual timer expired. sigprof = 27 // Profiling timer expired. sigwinch = 28 sigpoll = 29 sigsys = 31 } // List of all the errors returned by syscalls enum Errno { enoerror = 0x00000000 eperm = 0x00000001 enoent = 0x00000002 esrch = 0x00000003 eintr = 0x00000004 eio = 0x00000005 enxio = 0x00000006 e2big = 0x00000007 enoexec = 0x00000008 ebadf = 0x00000009 echild = 0x0000000a eagain = 0x0000000b enomem = 0x0000000c eacces = 0x0000000d efault = 0x0000000e enotblk = 0x0000000f ebusy = 0x00000010 eexist = 0x00000011 exdev = 0x00000012 enodev = 0x00000013 enotdir = 0x00000014 eisdir = 0x00000015 einval = 0x00000016 enfile = 0x00000017 emfile = 0x00000018 enotty = 0x00000019 etxtbsy = 0x0000001a efbig = 0x0000001b enospc = 0x0000001c espipe = 0x0000001d erofs = 0x0000001e emlink = 0x0000001f epipe = 0x00000020 edom = 0x00000021 erange = 0x00000022 } enum MemProt { prot_read = 0x1 prot_write = 0x2 prot_exec = 0x4 prot_none = 0x0 prot_growsdown = 0x01000000 prot_growsup = 0x02000000 } enum MapFlags { map_shared = 0x01 map_private = 0x02 map_shared_validate = 0x03 map_type = 0x0f map_fixed = 0x10 map_file = 0x00 map_anonymous = 0x20 map_huge_shift = 26 map_huge_mask = 0x3f } // const ( // fcntlf_dupfd = 0x00000000 // fcntlf_exlck = 0x00000004 // fcntlf_getfd = 0x00000001 // fcntlf_getfl = 0x00000003 // fcntlf_getlk = 0x00000005 // fcntlf_getlk64 = 0x0000000c // fcntlf_getown = 0x00000009 // fcntlf_getowner_uids = 0x00000011 // fcntlf_getown_ex = 0x00000010 // fcntlf_getsig = 0x0000000b // fcntlf_ofd_getlk = 0x00000024 // fcntlf_ofd_setlk = 0x00000025 // fcntlf_ofd_setlkw = 0x00000026 // fcntlf_owner_pgrp = 0x00000002 // fcntlf_owner_pid = 0x00000001 // fcntlf_owner_tid = 0x00000000 // fcntlf_rdlck = 0x00000000 // fcntlf_setfd = 0x00000002 // fcntlf_setfl = 0x00000004 // fcntlf_setlk = 0x00000006 // fcntlf_setlk64 = 0x0000000d // fcntlf_setlkw = 0x00000007 // fcntlf_setlkw64 = 0x0000000e // fcntlf_setown = 0x00000008 // fcntlf_setown_ex = 0x0000000f // fcntlf_setsig = 0x0000000a // fcntlf_shlck = 0x00000008 // fcntlf_unlck = 0x00000002 // fcntlf_wrlck = 0x00000001 // fcntllock_ex = 0x00000002 // fcntllock_mand = 0x00000020 // fcntllock_nb = 0x00000004 // fcntllock_read = 0x00000040 // fcntllock_rw = 0x000000c0 // fcntllock_sh = 0x00000001 // fcntllock_un = 0x00000008 // fcntllock_write = 0x00000080 // fcntlo_accmode = 0x00000003 // fcntlo_append = 0x00000400 // fcntlo_cloexec = 0x00080000 // fcntlo_creat = 0x00000040 // fcntlo_direct = 0x00004000 // fcntlo_directory = 0x00010000 // fcntlo_dsync = 0x00001000 // fcntlo_excl = 0x00000080 // fcntlo_largefile = 0x00008000 // fcntlo_ndelay = 0x00000800 // fcntlo_noatime = 0x00040000 // fcntlo_noctty = 0x00000100 // fcntlo_nofollow = 0x00020000 // fcntlo_nonblock = 0x00000800 // fcntlo_path = 0x00200000 // fcntlo_rdonly = 0x00000000 // fcntlo_rdwr = 0x00000002 // fcntlo_trunc = 0x00000200 // fcntlo_wronly = 0x00000001 // ) /* Paraphrased from "man 2 waitid" on Linux Upon successful return, waitid() fills in the following fields of the siginfo_t structure pointed to by infop: si_pid, offset 0x10, int index 0x04: The process ID of the child. si_uid: offset 0x14, int index 0x05 The real user ID of the child. si_signo: offset 0x00, int index 0x00 Always set to SIGCHLD. si_status: ofset 0x18, int index 0x06 1 the exit status of the child, as given to _exit(2) (or exit(3)) (sc_sys.cld_exited) 2 the signal that caused the child to terminate, stop, or continue. 3 The si_code field can be used to determine how to interpret this field. si_code, set to one of (enum Wi_si_code), offset 0x08, int index 0x02: CLD_EXITED (child called _exit(2)); CLD_KILLED (child killed by signal); CLD_DUMPED (child killed by signal, and dumped core); CLD_STOPPED (child stopped by signal); CLD_TRAPPED (traced child has trapped); CLD_CONTINUED (child continued by SIGCONT). */ const ( wp_sys_wnohang = u64(0x00000001) wp_sys_wuntraced = u64(0x00000002) wp_sys_wstopped = u64(0x00000002) wp_sys_wexited = u64(0x00000004) wp_sys_wcontinued = u64(0x00000008) wp_sys_wnowait = u64(0x01000000) // don't reap, just poll status. wp_sys___wnothread = u64(0x20000000) // don't wait on children of other threads in this group wp_sys___wall = u64(0x40000000) // wait on all children, regardless of type wp_sys___wclone = u64(0x80000000) // wait only on non-sigchld children ) // First argument to waitid: enum WiWhich { p_all = 0 p_pid = 1 p_pgid = 2 } enum WiSiCode { cld_exited = 1 // child has exited cld_killed = 2 // child was killed cld_dumped = 3 // child terminated abnormally cld_trapped = 4 // traced child has trapped cld_stopped = 5 // child has stopped cld_continued = 6 // stopped child has continued } fn split_int_errno(rc_in u64) (i64, Errno) { rc := i64(rc_in) if rc < 0 { return i64(-1), Errno(-rc) } return rc, Errno.enoerror } // 0 sys_read fn sys_read(fd i64, buf &byte, count u64) (i64, Errno) { return split_int_errno(sys_call3(0, u64(fd), u64(buf), count)) } // 1 sys_write pub fn sys_write(fd i64, buf &byte, count u64) (i64, Errno) { return split_int_errno(sys_call3(1, u64(fd), u64(buf), count)) } // 2 sys_open fn sys_open(filename &byte, flags i64, mode int) (i64, Errno) { return split_int_errno(sys_call3(2, u64(filename), u64(flags), u64(mode))) } // 3 sys_close fn sys_close(fd i64) Errno { return Errno(-i64(sys_call1(3, u64(fd)))) } // 9 sys_mmap fn sys_mmap(addr &byte, len u64, prot MemProt, flags MapFlags, fildes u64, off u64) (&byte, Errno) { rc := sys_call6(9, u64(addr), len, u64(prot), u64(flags), fildes, off) a, e := split_int_errno(rc) return &u8(a), e } // 11 sys_munmap fn sys_munmap(addr voidptr, len u64) Errno { return Errno(-sys_call2(11, u64(addr), len)) } // 25 sys_mremap fn sys_mremap(old_addr voidptr, old_len u64, new_len u64, flags u64) (&byte, Errno) { rc := sys_call4(25, u64(old_addr), old_len, new_len, flags) a, e := split_int_errno(rc) return &u8(a), e } // 22 sys_pipe fn sys_pipe(filedes &int) Errno { return Errno(sys_call1(22, u64(filedes))) } // 24 sys_sched_yield fn sys_sched_yield() Errno { return Errno(sys_call0(24)) } // 28 sys_madvise fn sys_madvise(addr voidptr, len u64, advice int) Errno { return Errno(sys_call3(28, u64(addr), len, u64(advice))) } // 39 sys_getpid fn sys_getpid() int { return int(sys_call0(39)) } // 57 sys_fork fn sys_fork() int { return int(sys_call0(57)) } // 58 sys_vfork fn sys_vfork() int { return int(sys_call0(58)) } // 33 sys_dup2 fn sys_dup2(oldfd int, newfd int) (i64, Errno) { return split_int_errno(sys_call2(33, u64(oldfd), u64(newfd))) } // 59 sys_execve fn sys_execve(filename &byte, argv []&byte, envp []&byte) int { return int(sys_call3(59, u64(filename), argv.data, envp.data)) } // 60 sys_exit [noreturn] fn sys_exit(ec int) { sys_call1(60, u64(ec)) for {} } // 102 sys_getuid fn sys_getuid() int { return int(sys_call0(102)) } // 247 sys_waitid fn sys_waitid(which WiWhich, pid int, infop &int, options int, ru voidptr) Errno { return Errno(sys_call5(247, u64(which), u64(pid), u64(infop), u64(options), u64(ru))) } fn sys_call0(scn u64) u64 { mut res := u64(0) asm amd64 { syscall ; =a (res) ; a (scn) } return res } fn sys_call1(scn u64, arg1 u64) u64 { mut res := u64(0) asm amd64 { syscall ; =a (res) ; a (scn) D (arg1) } return res } fn sys_call2(scn u64, arg1 u64, arg2 u64) u64 { mut res := u64(0) asm amd64 { syscall ; =a (res) ; a (scn) D (arg1) S (arg2) } return res } fn sys_call3(scn u64, arg1 u64, arg2 u64, arg3 u64) u64 { mut res := u64(0) asm amd64 { syscall ; =a (res) ; a (scn) D (arg1) S (arg2) d (arg3) } return res } fn sys_call4(scn u64, arg1 u64, arg2 u64, arg3 u64, arg4 u64) u64 { mut res := u64(0) asm amd64 { mov r10, arg4 syscall ; =a (res) ; a (scn) D (arg1) S (arg2) d (arg3) r (arg4) ; r10 } return res } fn sys_call5(scn u64, arg1 u64, arg2 u64, arg3 u64, arg4 u64, arg5 u64) u64 { mut res := u64(0) asm amd64 { mov r10, arg4 mov r8, arg5 syscall ; =a (res) ; a (scn) D (arg1) S (arg2) d (arg3) r (arg4) r (arg5) ; r10 r8 } return res } fn sys_call6(scn u64, arg1 u64, arg2 u64, arg3 u64, arg4 u64, arg5 u64, arg6 u64) u64 { mut res := u64(0) asm amd64 { mov r10, arg4 mov r8, arg5 mov r9, arg6 syscall ; =a (res) ; a (scn) D (arg1) S (arg2) d (arg3) r (arg4) r (arg5) r (arg6) ; r10 r8 r9 } return res } asm amd64 { .globl _start _start: call main mov rax, 60 xor rdi, rdi syscall ret }