// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module builtin import strings pub struct array { pub: data voidptr// Using a void pointer allows to implement arrays without generics and without generating // extra code for every type. len int cap int element_size int } // Internal function, used by V (`nums := []int`) fn __new_array(mylen int, cap int, elm_size int) array { cap_ := if cap == 0 { 1 } else { cap } arr := array{ len: mylen cap: cap_ element_size: elm_size data: vcalloc(cap_ * elm_size) } return arr } // Private function, used by V (`nums := [1, 2, 3]`) fn new_array_from_c_array(len, cap, elm_size int, c_array voidptr) array { cap_ := if cap == 0 { 1 } else { cap } arr := array{ len: len cap: cap element_size: elm_size data: vcalloc(cap_ * elm_size) } // TODO Write all memory functions (like memcpy) in V C.memcpy(arr.data, c_array, len * elm_size) return arr } // Private function, used by V (`nums := [1, 2, 3] !`) fn new_array_from_c_array_no_alloc(len, cap, elm_size int, c_array voidptr) array { arr := array{ len: len cap: cap element_size: elm_size data: c_array } return arr } // Private function. Doubles array capacity if needed fn (a mut array) ensure_cap(required int) { if required <= a.cap { return } mut cap := if a.cap == 0 { 2 } else { a.cap * 2 } for required > cap { cap *= 2 } if a.cap == 0 { a.data = vcalloc(cap * a.element_size) } else { a.data = C.realloc(a.data, cap * a.element_size) } a.cap = cap } // repeat returns new array with the given array elements repeated given times. pub fn (a array) repeat(count int) array { if count < 0 { panic('array.repeat: count is negative: $count') } mut size := count * a.len * a.element_size if size == 0 { size = a.element_size } arr := array{ len: count * a.len cap: count * a.len element_size: a.element_size data: vcalloc(size) } for i in 0..count { C.memcpy(byteptr(arr.data) + i * a.len * a.element_size, byteptr(a.data), a.len * a.element_size) } return arr } // array.sort sorts array in-place using given `compare` function as comparator pub fn (a mut array) sort_with_compare(compare voidptr) { C.qsort(a.data, a.len, a.element_size, compare) } // TODO array.insert is broken // Cannot pass literal or primitive type as it cannot be cast to voidptr. // In the current state only that would work: // i := 3 // a.insert(0, &i) // ---------------------------- pub fn (a mut array) insert(i int, val voidptr) { $if !no_bounds_checking? { if i < 0 || i > a.len { panic('array.insert: index out of range (i == $i, a.len == $a.len)') } } a.ensure_cap(a.len + 1) size := a.element_size C.memmove(byteptr(a.data) + (i + 1) * size, byteptr(a.data) + i * size, (a.len - i) * size) C.memcpy(byteptr(a.data) + i * size, val, size) a.len++ } // TODO array.prepend is broken // It depends on array.insert // ----------------------------- pub fn (a mut array) prepend(val voidptr) { a.insert(0, val) } // array.delete deletes array element at the given index pub fn (a mut array) delete(i int) { $if !no_bounds_checking? { if i < 0 || i >= a.len { panic('array.delete: index out of range (i == $i, a.len == $a.len)') } } size := a.element_size C.memmove(byteptr(a.data) + i * size, byteptr(a.data) + (i + 1) * size, (a.len - i) * size) a.len-- } // clears the array without deallocating the allocated data pub fn (a mut array) clear() { a.len = 0 } // trims the array length to "index" without modifying the allocated data. If "index" is greater // than len nothing will be changed pub fn (a mut array) trim(index int) { if index < a.len { a.len = index } } // Private function. Used to implement array[] operator fn (a array) get(i int) voidptr { $if !no_bounds_checking? { if i < 0 || i >= a.len { panic('array.get: index out of range (i == $i, a.len == $a.len)') } } return byteptr(a.data) + i * a.element_size } // array.first returns the first element of the array pub fn (a array) first() voidptr { $if !no_bounds_checking? { if a.len == 0 { panic('array.first: array is empty') } } return a.data } // array.last returns the last element of the array pub fn (a array) last() voidptr { $if !no_bounds_checking? { if a.len == 0 { panic('array.last: array is empty') } } return byteptr(a.data) + (a.len - 1) * a.element_size } // array.slice returns an array using the same buffer as original array // but starting from the `start` element and ending with the element before // the `end` element of the original array with the length and capacity // set to the number of the elements in the slice. fn (a array) slice(start, _end int) array { mut end := _end $if !no_bounds_checking? { if start > end { panic('array.slice: invalid slice index ($start > $end)') } if end > a.len { panic('array.slice: slice bounds out of range ($end >= $a.len)') } if start < 0 { panic('array.slice: slice bounds out of range ($start < 0)') } } l := end - start res := array{ element_size: a.element_size data: byteptr(a.data) + start * a.element_size len: l cap: l } return res } // used internally for [2..4] fn (a array) slice2(start, _end int, end_max bool) array { end := if end_max { a.len } else { _end } return a.slice(start, end) } // array.clone returns an independent copy of a given array pub fn (a &array) clone() array { mut size := a.cap * a.element_size if size == 0 { size++ } arr := array{ len: a.len cap: a.cap element_size: a.element_size data: vcalloc(size) } C.memcpy(byteptr(arr.data), a.data, a.cap * a.element_size) return arr } fn (a &array) slice_clone(start, _end int) array { mut end := _end $if !no_bounds_checking? { if start > end { panic('array.slice: invalid slice index ($start > $end)') } if end > a.len { panic('array.slice: slice bounds out of range ($end >= $a.len)') } if start < 0 { panic('array.slice: slice bounds out of range ($start < 0)') } } l := end - start res := array{ element_size: a.element_size data: byteptr(a.data) + start * a.element_size len: l cap: l } return res.clone() } // Private function. Used to implement assigment to the array element. fn (a mut array) set(i int, val voidptr) { $if !no_bounds_checking? { if i < 0 || i >= a.len { panic('array.set: index out of range (i == $i, a.len == $a.len)') } } C.memcpy(byteptr(a.data) + a.element_size * i, val, a.element_size) } fn (a mut array) push(val voidptr) { a.ensure_cap(a.len + 1) C.memcpy(byteptr(a.data) + a.element_size * a.len, val, a.element_size) a.len++ } // `val` is array.data // TODO make private, right now it's used by strings.Builder pub fn (a3 mut array) push_many(val voidptr, size int) { if a3.data == val { // handle `arr << arr` copy := a3.clone() a3.ensure_cap(a3.len + size) //C.memcpy(a.data, copy.data, copy.element_size * copy.len) C.memcpy(byteptr(a3.data) + a3.element_size * a3.len, copy.data, a3.element_size * size) } else { a3.ensure_cap(a3.len + size) C.memcpy(byteptr(a3.data) + a3.element_size * a3.len, val, a3.element_size * size) } a3.len += size } // array.reverse returns a new array with the elements of // the original array in reverse order. pub fn (a array) reverse() array { if a.len < 2 { return a } arr := array{ len: a.len cap: a.cap element_size: a.element_size data: vcalloc(a.cap * a.element_size) } for i in 0..a.len { //C.memcpy(arr.data + i * arr.element_size, &a[a.len - 1 - i], arr.element_size) C.memcpy(byteptr(arr.data) + i * arr.element_size, byteptr(a.data) + (a.len - 1 - i) * arr.element_size, arr.element_size) } return arr } // pub fn (a []int) free() { [unsafe_fn] pub fn (a array) free() { // if a.is_slice { // return // } C.free(a.data) } // []string.str returns a string representation of the array of strings // => '["a", "b", "c"]' pub fn (a []string) str() string { mut sb := strings.new_builder(a.len * 3) sb.write('[') for i in 0..a.len { val := a[i] sb.write('"') sb.write(val) sb.write('"') if i < a.len - 1 { sb.write(', ') } } sb.write(']') return sb.str() } // []byte.hex returns a string with the hexadecimal representation // of the byte elements of the array pub fn (b []byte) hex() string { mut hex := malloc(b.len * 2 + 1) mut dst_i := 0 for i in b { n0 := i >> 4 hex[dst_i++] = if n0 < 10 { n0 + `0` } else { n0 + 87 } n1 := i & 0xF hex[dst_i++] = if n1 < 10 { n1 + `0` } else { n1 + 87 } } hex[dst_i] = `\0` return tos(hex,dst_i) } // copy copies the `src` byte array elements to the `dst` byte array. // The number of the elements copied is the minimum of the length of both arrays. // Returns the number of elements copied. // TODO: implement for all types pub fn copy(dst, src []byte) int { if dst.len > 0 && src.len > 0 { mut min := 0 min = if dst.len < src.len { dst.len } else { src.len } C.memcpy(byteptr(dst.data), src[..min].data, dst.element_size * min) return min } return 0 } // Private function. Comparator for int type. fn compare_ints(a, b &int) int { if *a < *b { return -1 } if *a > *b { return 1 } return 0 } // []int.sort sorts array of int in place in ascending order. pub fn (a mut []int) sort() { a.sort_with_compare(compare_ints) } // []string.index returns the index of the first element equal to the given value, // or -1 if the value is not found in the array. pub fn (a []string) index(v string) int { for i in 0..a.len { if a[i] == v { return i } } return -1 } // []int.index returns the index of the first element equal to the given value, // or -1 if the value is not found in the array. pub fn (a []int) index(v int) int { for i in 0..a.len { if a[i] == v { return i } } return -1 } // []byte.index returns the index of the first element equal to the given value, // or -1 if the value is not found in the array. pub fn (a []byte) index(v byte) int { for i in 0..a.len { if a[i] == v { return i } } return -1 } // []char.index returns the index of the first element equal to the given value, // or -1 if the value is not found in the array. // TODO is `char` type yet in the language? pub fn (a []char) index(v char) int { for i in 0..a.len { if a[i] == v { return i } } return -1 } // []int.reduce executes a given reducer function on each element of the array, // resulting in a single output value. pub fn (a []int) reduce(iter fn(accum, curr int)int, accum_start int) int { mut accum_ := accum_start for i in a { accum_ = iter(accum_, i) } return accum_ } // array_eq checks if two arrays contain all the same elements in the same order. // []int == []int (also for: i64, f32, f64, byte, string) /* fn array_eq(a1, a2 []T) bool { if a1.len != a2.len { return false } for i in 0..a1.len { if a1[i] != a2[i] { return false } } return true } pub fn (a []int) eq(a2 []int) bool { return array_eq(a, a2) } pub fn (a []i64) eq(a2 []i64) bool { return array_eq(a, a2) } pub fn (a []byte) eq(a2 []byte) bool { return array_eq(a, a2) } pub fn (a []f32) eq(a2 []f32) bool { return array_eq(a, a2) } */ pub fn (a1 []string) eq(a2 []string) bool { //return array_eq(a, a2) if a1.len != a2.len { return false } for i in 0..a1.len { if a1[i] != a2[i] { return false } } return true } // compare_i64 for []f64 sort_with_compare() // sort []i64 with quicksort // usage : // mut x := [i64(100),10,70,28,92] // x.sort_with_compare(compare_i64) // println(x) // Sorted i64 Array // output: // [10, 28, 70, 92, 100] pub fn compare_i64(a, b &i64) int { if *a < *b { return -1 } if *a > *b { return 1 } return 0 } // compare_f64 for []f64 sort_with_compare() // ref. compare_i64(...) pub fn compare_f64(a, b &f64) int { if *a < *b { return -1 } if *a > *b { return 1 } return 0 } // compare_f32 for []f32 sort_with_compare() // ref. compare_i64(...) pub fn compare_f32(a, b &f32) int { if *a < *b { return -1 } if *a > *b { return 1 } return 0 } // a.pointers() returns a new array, where each element // is the address of the corresponding element in a. pub fn (a array) pointers() []voidptr { mut res := []voidptr{} for i in 0..a.len { res << byteptr(a.data) + i * a.element_size } return res }