// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module builtin import strconv /* NB: A V string should be/is immutable from the point of view of V user programs after it is first created. A V string is also slightly larger than the equivalent C string because the V string also has an integer length attached. This tradeoff is made, since V strings are created just *once*, but potentially used *many times* over their lifetime. The V string implementation uses a struct, that has a .str field, which points to a C style 0 terminated memory block. Although not strictly necessary from the V point of view, that additional 0 is *very useful for C interoperability*. The V string implementation also has an integer .len field, containing the length of the .str field, excluding the terminating 0 (just like the C's strlen(s) would do). The 0 ending of .str, and the .len field, mean that in practice: a) a V string s can be used very easily, wherever a C string is needed, just by passing s.str, without a need for further conversion/copying. b) where strlen(s) is needed, you can just pass s.len, without having to constantly recompute the length of s *over and over again* like some C programs do. This is because V strings are immutable and so their length does not change. Ordinary V code *does not need* to be concerned with the additional 0 in the .str field. The 0 *must* be put there by the low level string creating functions inside this module. Failing to do this will lead to programs that work most of the time, when used with pure V functions, but fail in strange ways, when used with modules using C functions (for example os and so on). */ pub struct string { pub: str byteptr // points to a C style 0 terminated string of bytes. len int // the length of the .str field, excluding the ending 0 byte. It is always equal to strlen(.str). mut: is_lit int } // mut: // hash_cache int // // NB string.is_lit is an enumeration of the following: // .is_lit == 0 => a fresh string, should be freed by autofree // .is_lit == 1 => a literal string from .rodata, should NOT be freed // .is_lit == -98761234 => already freed string, protects against double frees. // ---------> ^^^^^^^^^ calling free on these is a bug. // Any other value means that the string has been corrupted. pub struct ustring { pub mut: s string runes []int len int } // vstrlen returns the V length of the C string `s` (0 terminator is not counted). [unsafe] pub fn vstrlen(s byteptr) int { return unsafe { C.strlen(charptr(s)) } } // tos converts a C string to a V string. // String data is reused, not copied. [unsafe] pub fn tos(s byteptr, len int) string { // This should never happen. if s == 0 { panic('tos(): nil string') } return string{ str: s len: len } } // tos_clone returns a copy of `s`. [unsafe] pub fn tos_clone(s byteptr) string { return unsafe { tos2(s) }.clone() } // tos2 does the same as `tos`, but also calculates the length. Called by `string(bytes)` casts. // Used only internally. [unsafe] pub fn tos2(s byteptr) string { if s == 0 { panic('tos2: nil string') } return string{ str: s len: unsafe { vstrlen(s) } } } // tos3 does the same as `tos2`, but for char*, to avoid warnings. [unsafe] pub fn tos3(s charptr) string { if s == 0 { panic('tos3: nil string') } return string{ str: byteptr(s) len: unsafe { C.strlen(s) } } } // tos4 does the same as `tos2`, but returns an empty string on nil ptr. [unsafe] pub fn tos4(s byteptr) string { if s == 0 { return '' } return unsafe { tos2(s) } } // tos5 does the same as `tos4`, but for char*, to avoid warnings. [unsafe] pub fn tos5(s charptr) string { if s == 0 { return '' } return unsafe { tos3(s) } } [deprecated] pub fn tos_lit(s charptr) string { eprintln('warning: `tos_lit` has been deprecated, use `_SLIT` instead') return string{ str: byteptr(s) len: unsafe { C.strlen(s) } is_lit: 1 } } // vstring converts a C style string to a V string. NB: the string data is reused, NOT copied. [unsafe] pub fn (bp byteptr) vstring() string { return string{ str: bp len: unsafe { C.strlen(charptr(bp)) } } } // vstring_with_len converts a C style string to a V string. NB: the string data is reused, NOT copied. [unsafe] pub fn (bp byteptr) vstring_with_len(len int) string { return string{ str: bp len: len } } // vstring converts C char* to V string. NB: the string data is reused, NOT copied. [unsafe] pub fn (cp charptr) vstring() string { return string{ str: byteptr(cp) len: unsafe { C.strlen(cp) } } } // vstring_with_len converts C char* to V string. NB: the string data is reused, NOT copied. [unsafe] pub fn (cp charptr) vstring_with_len(len int) string { return string{ str: byteptr(cp) len: len } } // clone_static returns an independent copy of a given array. // It should be used only in -autofree generated code. fn (a string) clone_static() string { return a.clone() } // clone returns a copy of the V string `a`. pub fn (a string) clone() string { if a == '' { // TODO perf? an extra check in each clone() is not nice. return '' } mut b := string{ str: unsafe { malloc(a.len + 1) } len: a.len } unsafe { C.memcpy(b.str, a.str, a.len) b.str[a.len] = `\0` } return b } /* pub fn (s string) cstr() byteptr { clone := s.clone() return clone.str } */ // cstring_to_vstring creates a copy of cstr and turns it into a v string. [unsafe] pub fn cstring_to_vstring(cstr byteptr) string { return unsafe { tos_clone(cstr) } } // replace_once replaces the first occurence of `rep` with the string passed in `with`. pub fn (s string) replace_once(rep string, with string) string { idx := s.index_(rep) if idx == -1 { return s.clone() } return s.substr(0, idx) + with + s.substr(idx + rep.len, s.len) } // replace replaces all occurences of `rep` with the string passed in `with`. pub fn (s string) replace(rep string, with string) string { if s.len == 0 || rep.len == 0 { return s.clone() } // TODO PERF Allocating ints is expensive. Should be a stack array // Get locations of all reps within this string mut idxs := []int{} defer { unsafe { idxs.free() } } mut idx := 0 for { idx = s.index_after(rep, idx) if idx == -1 { break } idxs << idx idx += rep.len } // Dont change the string if there's nothing to replace if idxs.len == 0 { return s.clone() } // Now we know the number of replacements we need to do and we can calc the len of the new string new_len := s.len + idxs.len * (with.len - rep.len) mut b := unsafe { malloc(new_len + 1) } // add a newline just in case // Fill the new string mut idx_pos := 0 mut cur_idx := idxs[idx_pos] mut b_i := 0 for i := 0; i < s.len; i++ { if i == cur_idx { // Reached the location of rep, replace it with "with" for j in 0 .. with.len { unsafe { b[b_i] = with[j] } b_i++ } // Skip the length of rep, since we just replaced it with "with" i += rep.len - 1 // Go to the next index idx_pos++ if idx_pos < idxs.len { cur_idx = idxs[idx_pos] } } else { // Rep doesnt start here, just copy unsafe { b[b_i] = s[i] } b_i++ } } unsafe { b[new_len] = `\0` return tos(b, new_len) } } struct RepIndex { idx int val_idx int } // compare_rep_index returns the result of comparing RepIndex `a` and `b`. fn compare_rep_index(a &RepIndex, b &RepIndex) int { if a.idx < b.idx { return -1 } if a.idx > b.idx { return 1 } return 0 } // sort2 sorts the RepIndex array using `compare_rep_index`. fn (mut a []RepIndex) sort2() { a.sort_with_compare(compare_rep_index) } // TODO /* fn (a RepIndex) < (b RepIndex) bool { return a.idx < b.idx } */ // replace_each replaces all occurences of the string pairs given in `vals`. // Example: assert 'ABCD'.replace_each(['B','C/','C','D','D','C']) == 'AC/DC' pub fn (s string) replace_each(vals []string) string { if s.len == 0 || vals.len == 0 { return s } if vals.len % 2 != 0 { println('string.replace_each(): odd number of strings') return s } // `rep` - string to replace // `with` - string to replace with // Remember positions of all rep strings, and calculate the length // of the new string to do just one allocation. mut new_len := s.len mut idxs := []RepIndex{} mut idx := 0 for rep_i := 0; rep_i < vals.len; rep_i += 2 { // vals: ['rep1, 'with1', 'rep2', 'with2'] rep := vals[rep_i] with := vals[rep_i + 1] for { idx = s.index_after(rep, idx) if idx == -1 { break } // We need to remember both the position in the string, // and which rep/with pair it refers to. idxs << RepIndex{ idx: idx val_idx: rep_i } idx += rep.len new_len += with.len - rep.len } } // Dont change the string if there's nothing to replace if idxs.len == 0 { return s } idxs.sort2() mut b := unsafe { malloc(new_len + 1) } // add a \0 just in case // Fill the new string mut idx_pos := 0 mut cur_idx := idxs[idx_pos] mut b_i := 0 for i := 0; i < s.len; i++ { if i == cur_idx.idx { // Reached the location of rep, replace it with "with" rep := vals[cur_idx.val_idx] with := vals[cur_idx.val_idx + 1] for j in 0 .. with.len { unsafe { b[b_i] = with[j] } b_i++ } // Skip the length of rep, since we just replaced it with "with" i += rep.len - 1 // Go to the next index idx_pos++ if idx_pos < idxs.len { cur_idx = idxs[idx_pos] } } else { // Rep doesnt start here, just copy unsafe { b[b_i] = s.str[i] } b_i++ } } unsafe { b[new_len] = `\0` return tos(b, new_len) } } // bool returns `true` if the string equals the word "true" it will return `false` otherwise. pub fn (s string) bool() bool { return s == 'true' || s == 't' // TODO t for pg, remove } // int returns the value of the string as an integer `'1'.int() == 1`. pub fn (s string) int() int { return int(strconv.common_parse_int(s, 0, 32, false, false)) } // i64 returns the value of the string as i64 `'1'.i64() == i64(1)`. pub fn (s string) i64() i64 { return strconv.common_parse_int(s, 0, 64, false, false) } // i8 returns the value of the string as i8 `'1'.i8() == i8(1)`. pub fn (s string) i8() i8 { return i8(strconv.common_parse_int(s, 0, 8, false, false)) } // i16 returns the value of the string as i16 `'1'.i16() == i16(1)`. pub fn (s string) i16() i16 { return i16(strconv.common_parse_int(s, 0, 16, false, false)) } // f32 returns the value of the string as f32 `'1.0'.f32() == f32(1)`. pub fn (s string) f32() f32 { // return C.atof(charptr(s.str)) return f32(strconv.atof64(s)) } // f64 returns the value of the string as f64 `'1.0'.f64() == f64(1)`. pub fn (s string) f64() f64 { // return C.atof(charptr(s.str)) return strconv.atof64(s) } // u16 returns the value of the string as u16 `'1'.u16() == u16(1)`. pub fn (s string) u16() u16 { return u16(strconv.common_parse_uint(s, 0, 16, false, false)) } // u32 returns the value of the string as u32 `'1'.u32() == u32(1)`. pub fn (s string) u32() u32 { return u32(strconv.common_parse_uint(s, 0, 32, false, false)) } // u64 returns the value of the string as u64 `'1'.u64() == u64(1)`. pub fn (s string) u64() u64 { return strconv.common_parse_uint(s, 0, 64, false, false) } // eq implements the `s == a` (equal) operator. fn (s string) eq(a string) bool { if s.str == 0 { // should never happen panic('string.eq(): nil string') } if s.len != a.len { return false } unsafe { return C.memcmp(s.str, a.str, a.len) == 0 } } // ne implements the `s != a` (not equal) operator. fn (s string) ne(a string) bool { return !s.eq(a) } // lt implements the `s < a` (less than) operator. fn (s string) lt(a string) bool { for i in 0 .. s.len { if i >= a.len || s[i] > a[i] { return false } else if s[i] < a[i] { return true } } if s.len < a.len { return true } return false } // le implements the `s <= a` (less than or equal to) operator. fn (s string) le(a string) bool { return s.lt(a) || s.eq(a) } // gt implements the `s > a` (greater than) operator. fn (s string) gt(a string) bool { return !s.le(a) } // ge implements the `s >= a` (greater than or equal to) operator. fn (s string) ge(a string) bool { return !s.lt(a) } // TODO `fn (s string) + (a string)` ? To be consistent with operator overloading syntax. // add concatenates string with the string given in `s`. fn (s string) add(a string) string { new_len := a.len + s.len mut res := string{ str: unsafe { malloc(new_len + 1) } len: new_len } for j in 0 .. s.len { unsafe { res.str[j] = s.str[j] } } for j in 0 .. a.len { unsafe { res.str[s.len + j] = a.str[j] } } unsafe { res.str[new_len] = `\0` // V strings are not null terminated, but just in case } return res } // split splits the string to an array by `delim`. // Example: assert 'A B C'.split(' ') == ['A','B','C'] // If `delim` is empty the string is split by it's characters. // Example: assert 'DEF'.split('') == ['D','E','F'] pub fn (s string) split(delim string) []string { return s.split_nth(delim, 0) } // split_nth splits the string based on the passed `delim` substring. // It returns the first Nth parts. When N=0, return all the splits. // The last returned element has the remainder of the string, even if // the remainder contains more `delim` substrings. pub fn (s string) split_nth(delim string, nth int) []string { mut res := []string{} mut i := 0 if delim.len == 0 { i = 1 for ch in s { if nth > 0 && i >= nth { res << s[i..] break } res << ch.ascii_str() i++ } return res } mut start := 0 // Take the left part for each delimiter occurence for i <= s.len { is_delim := i + delim.len <= s.len && s.substr(i, i + delim.len) == delim if is_delim { val := s.substr(start, i) was_last := nth > 0 && res.len == nth - 1 if was_last { break } res << val start = i + delim.len i = start } else { i++ } } // Then the remaining right part of the string if nth < 1 || res.len < nth { res << s[start..] } return res } // split_into_lines splits the string by newline characters. // Both `\n` and `\r\n` newline endings is supported. pub fn (s string) split_into_lines() []string { mut res := []string{} if s.len == 0 { return res } mut start := 0 for i := 0; i < s.len; i++ { is_lf := unsafe { s.str[i] } == `\n` is_crlf := i != s.len - 1 && unsafe { s.str[i] == `\r` && s.str[i + 1] == `\n` } is_eol := is_lf || is_crlf is_last := if is_crlf { i == s.len - 2 } else { i == s.len - 1 } if is_eol || is_last { if is_last && !is_eol { i++ } line := s.substr(start, i) res << line if is_crlf { i++ } start = i + 1 } } return res } // used internally for [2..4] fn (s string) substr2(start int, _end int, end_max bool) string { end := if end_max { s.len } else { _end } return s.substr(start, end) } // substr returns the string between index positions `start` and `end`. // Example: assert 'ABCD'.substr(1,3) == 'BC' pub fn (s string) substr(start int, end int) string { $if !no_bounds_checking ? { if start > end || start > s.len || end > s.len || start < 0 || end < 0 { /* $if debug { println('substr($start, $end) out of bounds (len=$s.len)') println('s="$s"') print_backtrace() return '' } */ panic('substr($start, $end) out of bounds (len=$s.len)') } } len := end - start if len == s.len { return s.clone() } mut res := string{ str: unsafe { malloc(len + 1) } len: len } for i in 0 .. len { unsafe { res.str[i] = s.str[start + i] } } unsafe { res.str[len] = `\0` } /* res := string { str: s.str + start len: len } */ return res } // index returns the position of the first character of the input string. // It will return `-1` if the input string can't be found. fn (s string) index_(p string) int { if p.len > s.len || p.len == 0 { return -1 } if p.len > 2 { return s.index_kmp(p) } mut i := 0 for i < s.len { mut j := 0 for j < p.len && unsafe { s.str[i + j] == p.str[j] } { j++ } if j == p.len { return i } i++ } return -1 } // index returns the position of the first character of the input string. // It will return `none` if the input string can't be found. pub fn (s string) index(p string) ?int { idx := s.index_(p) if idx == -1 { return none } return idx } // index_kmp does KMP search. fn (s string) index_kmp(p string) int { if p.len > s.len { return -1 } mut prefix := []int{len: p.len} mut j := 0 for i := 1; i < p.len; i++ { for unsafe { p.str[j] != p.str[i] } && j > 0 { j = prefix[j - 1] } if unsafe { p.str[j] == p.str[i] } { j++ } prefix[i] = j } j = 0 for i in 0 .. s.len { for unsafe { p.str[j] != s.str[i] } && j > 0 { j = prefix[j - 1] } if unsafe { p.str[j] == s.str[i] } { j++ } if j == p.len { return i - p.len + 1 } } return -1 } // index_any returns the position of any of the characters in the input string - if found. pub fn (s string) index_any(chars string) int { for c in chars { idx := s.index_(c.ascii_str()) if idx == -1 { continue } return idx } return -1 } // last_index returns the position of the last occurence of the input string. fn (s string) last_index_(p string) int { if p.len > s.len || p.len == 0 { return -1 } mut i := s.len - p.len for i >= 0 { mut j := 0 for j < p.len && unsafe { s.str[i + j] == p.str[j] } { j++ } if j == p.len { return i } i-- } return -1 } // last_index returns the position of the last occurence of the input string. pub fn (s string) last_index(p string) ?int { idx := s.last_index_(p) if idx == -1 { return none } return idx } // index_after returns the position of the input string, starting search from `start` position. pub fn (s string) index_after(p string, start int) int { if p.len > s.len { return -1 } mut strt := start if start < 0 { strt = 0 } if start >= s.len { return -1 } mut i := strt for i < s.len { mut j := 0 mut ii := i for j < p.len && unsafe { s.str[ii] == p.str[j] } { j++ ii++ } if j == p.len { return i } i++ } return -1 } // index_byte returns the index of byte `c` if found in the string. // index_byte returns -1 if the byte can not be found. pub fn (s string) index_byte(c byte) int { for i in 0 .. s.len { if unsafe { s.str[i] } == c { return i } } return -1 } // last_index_byte returns the index of the last occurence of byte `c` if found in the string. // last_index_byte returns -1 if the byte is not found. pub fn (s string) last_index_byte(c byte) int { for i := s.len - 1; i >= 0; i-- { if unsafe { s.str[i] == c } { return i } } return -1 } // count returns the number of occurrences of `substr` in the string. // count returns -1 if no `substr` could be found. pub fn (s string) count(substr string) int { if s.len == 0 || substr.len == 0 { return 0 } if substr.len > s.len { return 0 } mut n := 0 mut i := 0 for { i = s.index_after(substr, i) if i == -1 { return n } i += substr.len n++ } return 0 // TODO can never get here - v doesn't know that } // contains returns `true` if the string contains `substr`. pub fn (s string) contains(substr string) bool { if substr.len == 0 { return true } if s.index_(substr) == -1 { return false } return true } // contains_any returns `true` if the string contains any chars in `chars`. pub fn (s string) contains_any(chars string) bool { for c in chars { if c.ascii_str() in s { return true } } return false } // contains_any_substr returns `true` if the string contains any of the strings in `substrs`. pub fn (s string) contains_any_substr(substrs []string) bool { if substrs.len == 0 { return true } for sub in substrs { if s.contains(sub) { return true } } return false } // starts_with returns `true` if the string starts with `p`. pub fn (s string) starts_with(p string) bool { if p.len > s.len { return false } for i in 0 .. p.len { if unsafe { s.str[i] != p.str[i] } { return false } } return true } // ends_with returns `true` if the string ends with `p`. pub fn (s string) ends_with(p string) bool { if p.len > s.len { return false } for i in 0 .. p.len { if p[i] != s[s.len - p.len + i] { return false } } return true } // to_lower returns the string in all lowercase characters. // TODO only works with ASCII pub fn (s string) to_lower() string { unsafe { mut b := malloc(s.len + 1) for i in 0 .. s.len { b[i] = byte(C.tolower(s.str[i])) } b[s.len] = 0 return tos(b, s.len) } } // is_lower returns `true` if all characters in the string is lowercase. // Example: assert 'hello developer'.is_lower() == true pub fn (s string) is_lower() bool { for i in 0 .. s.len { if s[i] >= `A` && s[i] <= `Z` { return false } } return true } // to_upper returns the string in all uppercase characters. // Example: assert 'Hello V'.to_upper() == 'HELLO V' pub fn (s string) to_upper() string { unsafe { mut b := malloc(s.len + 1) for i in 0 .. s.len { b[i] = byte(C.toupper(s.str[i])) } b[s.len] = 0 return tos(b, s.len) } } // is_upper returns `true` if all characters in the string is uppercase. // Example: assert 'HELLO V'.is_upper() == true pub fn (s string) is_upper() bool { for i in 0 .. s.len { if s[i] >= `a` && s[i] <= `z` { return false } } return true } // capitalize returns the string with the first character capitalized. // Example: assert 'hello'.capitalize() == 'Hello' pub fn (s string) capitalize() string { if s.len == 0 { return '' } return s[0].ascii_str().to_upper() + s[1..] // sl := s.to_lower() // cap := sl[0].str().to_upper() + sl[1..] // return cap } // is_capital returns `true` if the first character in the string is a capital letter. // Example: assert 'Hello'.is_capital() == true pub fn (s string) is_capital() bool { if s.len == 0 || !(s[0] >= `A` && s[0] <= `Z`) { return false } for i in 1 .. s.len { if s[i] >= `A` && s[i] <= `Z` { return false } } return true } // title returns the string with each word capitalized. // Example: assert 'hello v developer'.title() == 'Hello V Developer' pub fn (s string) title() string { words := s.split(' ') mut tit := []string{} for word in words { tit << word.capitalize() } title := tit.join(' ') return title } // is_title returns true if all words of the string is capitalized. // Example: assert 'Hello V Developer'.is_title() == true pub fn (s string) is_title() bool { words := s.split(' ') for word in words { if !word.is_capital() { return false } } return true } // find_between returns the string found between `start` string and `end` string. // Example: assert 'hey [man] how you doin'.find_between('[', ']') == 'man' pub fn (s string) find_between(start string, end string) string { start_pos := s.index_(start) if start_pos == -1 { return '' } // First get everything to the right of 'start' val := s[start_pos + start.len..] end_pos := val.index_(end) if end_pos == -1 { return val } return val[..end_pos] } /* pub fn (a []string) to_c() voidptr { mut res := malloc(sizeof(byteptr) * a.len) for i in 0..a.len { val := a[i] res[i] = val.str } return res } */ // is_space returns `true` if the byte is a white space character. // The following list is considered white space characters: ` `, `\n`, `\t`, `\v`, `\f`, `\r`, 0x85, 0xa0 // Example: assert byte(` `).is_space() == true pub fn (c byte) is_space() bool { // 0x0085 is NEXT LINE (NEL) // 0x00a0 is NO-BREAK SPACE return c in [` `, `\n`, `\t`, `\v`, `\f`, `\r`, 0x85, 0xa0] } // trim_space strips any of ` `, `\n`, `\t`, `\v`, `\f`, `\r` from the start and end of the string. // Example: assert ' Hello V '.trim_space() == 'Hello V' pub fn (s string) trim_space() string { return s.trim(' \n\t\v\f\r') } // trim strips any of the characters given in `cutset` from the start and end of the string. // Example: assert ' ffHello V ffff'.trim(' f') == 'Hello V' pub fn (s string) trim(cutset string) string { if s.len < 1 || cutset.len < 1 { return s } cs_arr := cutset.bytes() mut pos_left := 0 mut pos_right := s.len - 1 mut cs_match := true for pos_left <= s.len && pos_right >= -1 && cs_match { cs_match = false if s[pos_left] in cs_arr { pos_left++ cs_match = true } if s[pos_right] in cs_arr { pos_right-- cs_match = true } if pos_left > pos_right { return '' } } return s.substr(pos_left, pos_right + 1) } // trim_left strips any of the characters given in `cutset` from the left of the string. // Example: assert 'd Hello V developer'.trim_left(' d') == 'Hello V developer' pub fn (s string) trim_left(cutset string) string { if s.len < 1 || cutset.len < 1 { return s } cs_arr := cutset.bytes() mut pos := 0 for pos < s.len && s[pos] in cs_arr { pos++ } return s[pos..] } // trim_right strips any of the characters given in `cutset` from the right of the string. // Example: assert ' Hello V d'.trim_right(' d') == ' Hello V' pub fn (s string) trim_right(cutset string) string { if s.len < 1 || cutset.len < 1 { return s } cs_arr := cutset.bytes() mut pos := s.len - 1 for pos >= 0 && s[pos] in cs_arr { pos-- } return if pos < 0 { '' } else { s[..pos + 1] } } // trim_prefix strips `str` from the start of the string. // Example: assert 'WorldHello V'.trim_prefix('World') == 'Hello V' pub fn (s string) trim_prefix(str string) string { if s.starts_with(str) { return s[str.len..] } return s } // trim_suffix strips `str` from the end of the string. // Example: assert 'Hello VWorld'.trim_suffix('World') == 'Hello V' pub fn (s string) trim_suffix(str string) string { if s.ends_with(str) { return s[..s.len - str.len] } return s } // compare_strings returns `-1` if `a < b`, `1` if `a > b` else `0`. pub fn compare_strings(a &string, b &string) int { if a.lt(b) { return -1 } if a.gt(b) { return 1 } return 0 } // compare_strings_reverse returns `1` if `a < b`, `-1` if `a > b` else `0`. fn compare_strings_reverse(a &string, b &string) int { if a.lt(b) { return 1 } if a.gt(b) { return -1 } return 0 } // compare_strings_by_len returns `-1` if `a.len < b.len`, `1` if `a.len > b.len` else `0`. fn compare_strings_by_len(a &string, b &string) int { if a.len < b.len { return -1 } if a.len > b.len { return 1 } return 0 } // compare_lower_strings returns the same as compare_strings but converts `a` and `b` to lower case before comparing. fn compare_lower_strings(a &string, b &string) int { aa := a.to_lower() bb := b.to_lower() return compare_strings(aa, bb) } // sort sorts the string array. pub fn (mut s []string) sort() { s.sort_with_compare(compare_strings) } // sort_ignore_case sorts the string array using case insesitive comparing. pub fn (mut s []string) sort_ignore_case() { s.sort_with_compare(compare_lower_strings) } // sort_by_len sorts the the string array by each string's `.len` length. pub fn (mut s []string) sort_by_len() { s.sort_with_compare(compare_strings_by_len) } // str returns the string itself. pub fn (s string) str() string { return s } // str returns the string itself. pub fn (s ustring) str() string { return s.s } // ustring converts the string to a unicode string. pub fn (s string) ustring() ustring { mut res := ustring{ s: s // runes will have at least s.len elements, save reallocations // TODO use VLA for small strings? runes: __new_array(0, s.len, int(sizeof(int))) } for i := 0; i < s.len; i++ { char_len := utf8_char_len(unsafe { s.str[i] }) res.runes << i i += char_len - 1 res.len++ } return res } // A hack that allows to create ustring without allocations. // It's called from functions like draw_text() where we know that the string is going to be freed // right away. Uses global buffer for storing runes []int array. __global ( g_ustring_runes []int ) pub fn (s string) ustring_tmp() ustring { if g_ustring_runes.len == 0 { g_ustring_runes = __new_array(0, 128, int(sizeof(int))) } mut res := ustring{ s: s } res.runes = g_ustring_runes res.runes.len = s.len mut j := 0 for i := 0; i < s.len; i++ { char_len := utf8_char_len(unsafe { s.str[i] }) res.runes[j] = i j++ i += char_len - 1 res.len++ } return res } // eq implements the `u == a` (equal) operator. fn (u ustring) eq(a ustring) bool { if u.len != a.len || u.s != a.s { return false } return true } // ne implements the `u != a` (not equal) operator. fn (u ustring) ne(a ustring) bool { return !u.eq(a) } // lt implements the `u < a` (less than) operator. fn (u ustring) lt(a ustring) bool { return u.s < a.s } // le implements the `u <= a` (less than or equal to) operator. fn (u ustring) le(a ustring) bool { return u.lt(a) || u.eq(a) } // gt implements the `u > a` (greater than) operator. fn (u ustring) gt(a ustring) bool { return !u.le(a) } // ge implements the `u >= a` (greater than or equal to) operator. fn (u ustring) ge(a ustring) bool { return !u.lt(a) } // add concatenates ustring with the string given in `s`. pub fn (u ustring) add(a ustring) ustring { mut res := ustring{ s: u.s + a.s runes: __new_array(0, u.s.len + a.s.len, int(sizeof(int))) } mut j := 0 for i := 0; i < u.s.len; i++ { char_len := utf8_char_len(unsafe { u.s.str[i] }) res.runes << j i += char_len - 1 j += char_len res.len++ } for i := 0; i < a.s.len; i++ { char_len := utf8_char_len(unsafe { a.s.str[i] }) res.runes << j i += char_len - 1 j += char_len res.len++ } return res } // index_after returns the position of the input string, starting search from `start` position. pub fn (u ustring) index_after(p ustring, start int) int { if p.len > u.len { return -1 } mut strt := start if start < 0 { strt = 0 } if start > u.len { return -1 } mut i := strt for i < u.len { mut j := 0 mut ii := i for j < p.len && u.at(ii) == p.at(j) { j++ ii++ } if j == p.len { return i } i++ } return -1 } // count returns the number of occurrences of `substr` in the string. // count returns -1 if no `substr` could be found. pub fn (u ustring) count(substr ustring) int { if u.len == 0 || substr.len == 0 { return 0 } if substr.len > u.len { return 0 } mut n := 0 mut i := 0 for { i = u.index_after(substr, i) if i == -1 { return n } i += substr.len n++ } return 0 // TODO can never get here - v doesn't know that } // substr returns the string between index positions `_start` and `_end`. // Example: assert 'ABCD'.substr(1,3) == 'BC' pub fn (u ustring) substr(_start int, _end int) string { $if !no_bounds_checking ? { if _start > _end || _start > u.len || _end > u.len || _start < 0 || _end < 0 { panic('substr($_start, $_end) out of bounds (len=$u.len)') } } end := if _end >= u.len { u.s.len } else { u.runes[_end] } return u.s.substr(u.runes[_start], end) } // left returns the `n`th leftmost characters of the ustring. // Example: assert 'hello'.left(2) == 'he' pub fn (u ustring) left(pos int) string { if pos >= u.len { return u.s } return u.substr(0, pos) } // right returns the `n`th rightmost characters of the ustring. // Example: assert 'hello'.right(2) == 'lo' pub fn (u ustring) right(pos int) string { if pos >= u.len { return '' } return u.substr(pos, u.len) } // at returns the byte at index `idx`. // Example: assert 'ABC'.at(1) == byte(`B`) fn (s string) at(idx int) byte { $if !no_bounds_checking ? { if idx < 0 || idx >= s.len { panic('string index out of range: $idx / $s.len') } } unsafe { return s.str[idx] } } // at returns the string at index `idx`. // Example: assert 'ABC'.at(1) == 'B' pub fn (u ustring) at(idx int) string { $if !no_bounds_checking ? { if idx < 0 || idx >= u.len { panic('string index out of range: $idx / $u.runes.len') } } return u.substr(idx, idx + 1) } // free allows for manually freeing the memory occupied by the unicode string. [unsafe] fn (u &ustring) free() { $if prealloc { return } unsafe { u.runes.free() u.s.free() } } // is_digit returns `true` if the byte is in range 0-9 and `false` otherwise. // Example: assert byte(`9`) == true pub fn (c byte) is_digit() bool { return c >= `0` && c <= `9` } // is_hex_digit returns `true` if the byte is either in range 0-9, a-f or A-F and `false` otherwise. // Example: assert byte(`F`) == true pub fn (c byte) is_hex_digit() bool { return c.is_digit() || (c >= `a` && c <= `f`) || (c >= `A` && c <= `F`) } // is_oct_digit returns `true` if the byte is in range 0-7 and `false` otherwise. // Example: assert byte(`7`) == true pub fn (c byte) is_oct_digit() bool { return c >= `0` && c <= `7` } // is_bin_digit returns `true` if the byte is a binary digit (0 or 1) and `false` otherwise. // Example: assert byte(`0`) == true pub fn (c byte) is_bin_digit() bool { return c == `0` || c == `1` } // is_letter returns `true` if the byte is in range a-z or A-Z and `false` otherwise. // Example: assert byte(`V`) == true pub fn (c byte) is_letter() bool { return (c >= `a` && c <= `z`) || (c >= `A` && c <= `Z`) } // free allows for manually freeing the memory occupied by the string [unsafe] pub fn (s &string) free() { $if prealloc { return } if s.is_lit == -98761234 { C.printf('double string.free() detected\n') return } if s.is_lit == 1 || s.len == 0 { return } unsafe { free(s.str) } s.is_lit = -98761234 } // before returns the contents before `dot` in the string. // Example: assert '23:34:45.234'.all_before('.') == '23:34:45' pub fn (s string) before(dot string) string { pos := s.index_(dot) if pos == -1 { return s } return s[..pos] } // all_before returns the contents before `dot` in the string. // Example: assert '23:34:45.234'.all_before('.') == '23:34:45' pub fn (s string) all_before(dot string) string { // TODO remove dup method pos := s.index_(dot) if pos == -1 { return s } return s[..pos] } // all_before_last returns the contents before the last occurence of `dot` in the string. // Example: assert '23:34:45.234'.all_before_last(':') == '23:34' pub fn (s string) all_before_last(dot string) string { pos := s.last_index_(dot) if pos == -1 { return s } return s[..pos] } // all_after returns the contents after `dot` in the string. // Example: assert '23:34:45.234'.all_after('.') == '234' pub fn (s string) all_after(dot string) string { pos := s.index_(dot) if pos == -1 { return s } return s[pos + dot.len..] } // all_after_last returns the contents after the last occurence of `dot` in the string. // Example: assert '23:34:45.234'.all_after_last(':') == '45.234' pub fn (s string) all_after_last(dot string) string { pos := s.last_index_(dot) if pos == -1 { return s } return s[pos + dot.len..] } // after returns the contents after the last occurence of `dot` in the string. // Example: assert '23:34:45.234'.after(':') == '45.234' pub fn (s string) after(dot string) string { return s.all_after_last(dot) } // after_char returns the contents after the first occurence of `dot` character in the string. // Example: assert '23:34:45.234'.after_char(`:`) == '34:45.234' pub fn (s string) after_char(dot byte) string { mut pos := 0 for i, c in s { if c == dot { pos = i break } } if pos == 0 { return s } return s[pos + 1..] } // fn (s []string) substr(a, b int) string { // return join_strings(s.slice_fast(a, b)) // } // join joins a string array into a string using `del` delimiter. // Example: assert ['Hello','V'].join(' ') == 'Hello V' pub fn (a []string) join(del string) string { if a.len == 0 { return '' } mut len := 0 for val in a { len += val.len + del.len } len -= del.len // Allocate enough memory mut res := '' res.len = len res.str = unsafe { malloc(res.len + 1) } mut idx := 0 // Go thru every string and copy its every char one by one for i, val in a { for j in 0 .. val.len { unsafe { res.str[idx] = val.str[j] } idx++ } // Add del if it's not last if i != a.len - 1 { for k in 0 .. del.len { unsafe { res.str[idx] = del.str[k] } idx++ } } } unsafe { res.str[res.len] = `\0` } return res } // join joins a string array into a string using a `\n` newline delimiter. pub fn (s []string) join_lines() string { return s.join('\n') } // reverse returns a reversed string. // Example: assert 'Hello V'.reverse() == 'V olleH' pub fn (s string) reverse() string { if s.len == 0 || s.len == 1 { return s } mut res := string{ str: unsafe { malloc(s.len) } len: s.len } for i := s.len - 1; i >= 0; i-- { unsafe { res.str[s.len - i - 1] = s[i] } } return res } // limit returns a portion of the string, starting at `0` and extending for a given number of characters afterward. // 'hello'.limit(2) => 'he' // 'hi'.limit(10) => 'hi' pub fn (s string) limit(max int) string { u := s.ustring() if u.len <= max { return s } return u.substr(0, max) } // hash returns an integer hash of the string. pub fn (s string) hash() int { // mut h := s.hash_cache mut h := u32(0) if h == 0 && s.len > 0 { for c in s { h = h * 31 + u32(c) } } return int(h) } // bytes returns the string converted to a byte array. pub fn (s string) bytes() []byte { if s.len == 0 { return [] } mut buf := []byte{len: s.len} unsafe { C.memcpy(buf.data, s.str, s.len) } return buf } // repeat returns a new string with `count` number of copies of the string it was called on. pub fn (s string) repeat(count int) string { if count < 0 { panic('string.repeat: count is negative: $count') } else if count == 0 { return '' } else if count == 1 { return s } mut ret := unsafe { malloc(s.len * count + 1) } for i in 0 .. count { for j in 0 .. s.len { unsafe { ret[i * s.len + j] = s[j] } } } unsafe { new_len := s.len * count ret[new_len] = 0 return ret.vstring_with_len(new_len) } } // fields returns a string array of the string split by `\t` and ` ` // Example: assert '\t\tv = v'.fields() == ['', '', 'v', '=', 'v'] pub fn (s string) fields() []string { mut res := []string{} mut word_start := 0 mut word_end := 0 mut is_in_word := false mut is_space := false for i, c in s { is_space = c in [` `, `\t`, `\n`] if !is_in_word && !is_space { word_start = i is_in_word = true continue } if is_space && is_in_word { word_end = i res << s[word_start..word_end] is_in_word = false word_end = 0 word_start = 0 continue } } if is_in_word && word_start > 0 { // collect the remainder word at the end res << s[word_start..s.len] } return res } // strip_margin allows multi-line strings to be formatted in a way that removes white-space // before a delimeter. by default `|` is used. // Note: the delimiter has to be a byte at this time. That means surrounding // the value in ``. // // Example: // st := 'Hello there, // |this is a string, // | Everything before the first | is removed'.strip_margin() // Returns: // Hello there, // this is a string, // Everything before the first | is removed pub fn (s string) strip_margin() string { return s.strip_margin_custom(`|`) } // strip_margin_custom does the same as `strip_margin` but will use `del` as delimiter instead of `|` pub fn (s string) strip_margin_custom(del byte) string { mut sep := del if sep.is_space() { eprintln('Warning: `strip_margin` cannot use white-space as a delimiter') eprintln(' Defaulting to `|`') sep = `|` } // don't know how much space the resulting string will be, but the max it // can be is this big mut ret := unsafe { malloc(s.len + 1) } mut count := 0 for i := 0; i < s.len; i++ { if s[i] in [`\n`, `\r`] { unsafe { ret[count] = s[i] } count++ // CRLF if s[i] == `\r` && i < s.len - 1 && s[i + 1] == `\n` { unsafe { ret[count] = s[i + 1] } count++ i++ } for s[i] != sep { i++ if i >= s.len { break } } } else { unsafe { ret[count] = s[i] } count++ } } unsafe { ret[count] = 0 return ret.vstring_with_len(count) } } // split_by_whitespace - extract only the non whitespace tokens/words from the given string `s`. // example: ' sss ssss'.split_by_whitespace() => ['sss', 'ssss'] [deprecated: 'use string.fields() instead'] pub fn (s string) split_by_whitespace() []string { return s.fields() }