// Copyright (c) 2019-2022 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. // Package sha1 implements the SHA-1 hash algorithm as defined in RFC 3174. // SHA-1 is cryptographically broken and should not be used for secure // applications. // Based off: https://github.com/golang/go/blob/master/src/crypto/sha1 // Last commit: https://github.com/golang/go/commit/3ce865d7a0b88714cc433454ae2370a105210c01 module sha1 import encoding.binary pub const ( // The size of a SHA-1 checksum in bytes. size = 20 // The blocksize of SHA-1 in bytes. block_size = 64 ) const ( chunk = 64 init0 = 0x67452301 init1 = 0xEFCDAB89 init2 = 0x98BADCFE init3 = 0x10325476 init4 = 0xC3D2E1F0 ) // digest represents the partial evaluation of a checksum. struct Digest { mut: h []u32 x []byte nx int len u64 } fn (mut d Digest) reset() { d.x = []byte{len: sha1.chunk} d.h = []u32{len: (5)} d.h[0] = u32(sha1.init0) d.h[1] = u32(sha1.init1) d.h[2] = u32(sha1.init2) d.h[3] = u32(sha1.init3) d.h[4] = u32(sha1.init4) d.nx = 0 d.len = 0 } // new returns a new Digest (implementing hash.Hash) computing the SHA1 checksum. pub fn new() &Digest { mut d := &Digest{} d.reset() return d } // write writes the contents of `p_` to the internal hash representation. [manualfree] pub fn (mut d Digest) write(p_ []byte) ?int { nn := p_.len unsafe { mut p := p_ d.len += u64(nn) if d.nx > 0 { n := copy(d.x[d.nx..], p) d.nx += n if d.nx == sha1.chunk { block(mut d, d.x) d.nx = 0 } if n >= p.len { p = [] } else { p = p[n..] } } if p.len >= sha1.chunk { n := p.len & ~(sha1.chunk - 1) block(mut d, p[..n]) if n >= p.len { p = [] } else { p = p[n..] } } if p.len > 0 { d.nx = copy(d.x, p) } } return nn } // sum returns a copy of the generated sum of the bytes in `b_in`. pub fn (d &Digest) sum(b_in []byte) []byte { // Make a copy of d so that caller can keep writing and summing. mut d0 := *d hash := d0.checksum() mut b_out := b_in.clone() for b in hash { b_out << b } return b_out } // checksum returns the byte checksum of the `Digest`. fn (mut d Digest) checksum() []byte { mut len := d.len // Padding. Add a 1 bit and 0 bits until 56 bytes mod 64. mut tmp := []byte{len: (64)} tmp[0] = 0x80 if int(len) % 64 < 56 { d.write(tmp[..56 - int(len) % 64]) or { panic(err) } } else { d.write(tmp[..64 + 56 - int(len) % 64]) or { panic(err) } } // Length in bits. len <<= 3 binary.big_endian_put_u64(mut tmp, len) d.write(tmp[..8]) or { panic(err) } mut digest := []byte{len: sha1.size} binary.big_endian_put_u32(mut digest, d.h[0]) binary.big_endian_put_u32(mut digest[4..], d.h[1]) binary.big_endian_put_u32(mut digest[8..], d.h[2]) binary.big_endian_put_u32(mut digest[12..], d.h[3]) binary.big_endian_put_u32(mut digest[16..], d.h[4]) return digest } // sum returns the SHA-1 checksum of the bytes passed in `data`. pub fn sum(data []byte) []byte { mut d := new() d.write(data) or { panic(err) } return d.checksum() } fn block(mut dig Digest, p []byte) { // For now just use block_generic until we have specific // architecture optimized versions block_generic(mut dig, p) } // size returns the size of the checksum in bytes. pub fn (d &Digest) size() int { return sha1.size } // block_size returns the block size of the checksum in bytes. pub fn (d &Digest) block_size() int { return sha1.block_size } // hexhash returns a hexadecimal SHA1 hash sum `string` of `s`. pub fn hexhash(s string) string { return sum(s.bytes()).hex() }