// Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module builtin import strings struct array { pub: // Using a void pointer allows to implement arrays without generics and without generating // extra code for every type. data voidptr len int cap int element_size int } // Private function, used by V (`nums := []int`) fn new_array(mylen, cap, elm_size int) array { arr := array { len: mylen cap: cap element_size: elm_size data: calloc(cap * elm_size) } return arr } // TODO pub fn make(len, cap, elm_size int) array { return new_array(len, cap, elm_size) } // Private function, used by V (`nums := [1, 2, 3]`) fn new_array_from_c_array(len, cap, elm_size int, c_array voidptr) array { arr := array { len: len cap: cap element_size: elm_size data: calloc(cap * elm_size) } // TODO Write all memory functions (like memcpy) in V C.memcpy(arr.data, c_array, len * elm_size) return arr } // Private function, used by V (`nums := [1, 2, 3] !`) fn new_array_from_c_array_no_alloc(len, cap, elm_size int, c_array voidptr) array { arr := array { len: len cap: cap element_size: elm_size data: c_array } return arr } // Private function, used by V (`[0; 100]`) fn array_repeat_old(val voidptr, nr_repeats, elm_size int) array { arr := array { len: nr_repeats cap: nr_repeats element_size: elm_size data: calloc(nr_repeats * elm_size) } for i := 0; i < nr_repeats; i++ { C.memcpy(arr.data + i * elm_size, val, elm_size) } return arr } pub fn (a array) repeat(nr_repeats int) array { arr := array { len: nr_repeats cap: nr_repeats element_size: a.element_size data: calloc(nr_repeats * a.element_size) } val := a.data + 0 //nr_repeats * a.element_size for i := 0; i < nr_repeats; i++ { C.memcpy(arr.data + i * a.element_size, val, a.element_size) } return arr } pub fn (a mut array) sort_with_compare(compare voidptr) { C.qsort(a.data, a.len, a.element_size, compare) } pub fn (a mut array) insert(i int, val voidptr) { if i >= a.len { panic('array.insert: index larger than length') } a.push(val) size := a.element_size C.memmove(a.data + (i + 1) * size, a.data + i * size, (a.len - i) * size) a.set(i, val) } pub fn (a mut array) prepend(val voidptr) { a.insert(0, val) } pub fn (a mut array) delete(idx int) { size := a.element_size C.memmove(a.data + idx * size, a.data + (idx + 1) * size, (a.len - idx) * size) a.len-- a.cap-- } fn (a array) get(i int) voidptr { if i < 0 || i >= a.len { panic('array index out of range: $i/$a.len') } return a.data + i * a.element_size } pub fn (a array) first() voidptr { if a.len == 0 { panic('array.first: empty array') } return a.data + 0 } pub fn (a array) last() voidptr { if a.len == 0 { panic('array.last: empty array') } return a.data + (a.len - 1) * a.element_size } pub fn (s array) left(n int) array { if n >= s.len { return s } return s.slice(0, n) } pub fn (s array) right(n int) array { if n >= s.len { return new_array(0, 0, s.element_size) } return s.slice(n, s.len) } // used internally for [2..4] fn (s array) slice2(start, _end int, end_max bool) array { end := if end_max { s.len } else { _end } return s.slice(start, end) } pub fn (s array) slice(start, _end int) array { mut end := _end if start > end { panic('invalid slice index: $start > $end') } if end > s.len { panic('runtime error: slice bounds out of range ($end >= $s.len)') } if start < 0 { panic('runtime error: slice bounds out of range ($start < 0)') } l := end - start res := array { element_size: s.element_size data: s.data + start * s.element_size len: l cap: l //is_slice: true } return res } fn (a mut array) set(idx int, val voidptr) { if idx < 0 || idx >= a.len { panic('array index out of range: $idx / $a.len') } C.memcpy(a.data + a.element_size * idx, val, a.element_size) } fn (arr mut array) push(val voidptr) { if arr.len >= arr.cap - 1 { cap := (arr.len + 1) * 2 // println('_push: realloc, new cap=$cap') if arr.cap == 0 { arr.data = calloc(cap * arr.element_size) } else { arr.data = C.realloc(arr.data, cap * arr.element_size) } arr.cap = cap } C.memcpy(arr.data + arr.element_size * arr.len, val, arr.element_size) arr.len++ } // `val` is array.data // TODO make private, right now it's used by strings.Builder pub fn (arr mut array) push_many(val voidptr, size int) { if arr.len >= arr.cap - size { cap := (arr.len + size) * 2 // println('_push: realloc, new cap=$cap') if arr.cap == 0 { arr.data = calloc(cap * arr.element_size) } else { arr.data = C.realloc(arr.data, cap * arr.element_size) } arr.cap = cap } C.memcpy(arr.data + arr.element_size * arr.len, val, arr.element_size * size) arr.len += size } pub fn (a array) reverse() array { arr := array { len: a.len cap: a.cap element_size: a.element_size data: calloc(a.cap * a.element_size) } for i := 0; i < a.len; i++ { C.memcpy(arr.data + i * arr.element_size, &a[a.len-1-i], arr.element_size) } return arr } pub fn (a array) clone() array { arr := array { len: a.len cap: a.cap element_size: a.element_size data: calloc(a.cap * a.element_size) } C.memcpy(arr.data, a.data, a.cap * a.element_size) return arr } //pub fn (a []int) free() { [unsafe_fn] pub fn (a array) free() { //if a.is_slice { //return //} C.free(a.data) } // "[ 'a', 'b', 'c' ]" pub fn (a []string) str() string { mut sb := strings.new_builder(a.len * 3) sb.write('[') for i := 0; i < a.len; i++ { val := a[i] sb.write('"') sb.write(val) sb.write('"') if i < a.len - 1 { sb.write(', ') } } sb.write(']') return sb.str() } // "[true, true, false]" pub fn (a []bool) str() string { mut sb := strings.new_builder(a.len * 3) sb.write('[') for i := 0; i < a.len; i++ { val := a[i] if val { sb.write('true') } else { sb.write('false') } if i < a.len - 1 { sb.write(', ') } } sb.write(']') return sb.str() } pub fn (b []byte) hex() string { mut hex := malloc(b.len*2+1) mut ptr := &hex[0] for i := 0; i < b.len ; i++ { ptr += C.sprintf(*char(ptr), '%02x', b[i]) } return string(hex) } // TODO: implement for all types pub fn copy(dst, src []byte) int { if dst.len > 0 && src.len > 0 { min := if dst.len < src.len { dst.len } else { src.len } C.memcpy(dst.data, src.left(min).data, dst.element_size*min) return min } return 0 } fn compare_ints(a, b &int) int { if a < b { return -1 } if a > b { return 1 } return 0 } pub fn (a mut []int) sort() { a.sort_with_compare(compare_ints) } // Looking for an array index based on value. // If there is, it will return the index and if not, it will return `-1` pub fn (a []string) index(v string) int { for i := 0; i < a.len; i++ { if a[i] == v { return i } } return -1 } pub fn (a []int) index(v int) int { for i := 0; i < a.len; i++ { if a[i] == v { return i } } return -1 } pub fn (a []byte) index(v byte) int { for i := 0; i < a.len; i++ { if a[i] == v { return i } } return -1 } pub fn (a []char) index(v char) int { for i := 0; i < a.len; i++ { if a[i] == v { return i } } return -1 } // Executes a reducer function (that you provide) on each element of the array, // resulting in a single output value. pub fn (a []int) reduce(iter fn (accum, curr int) int, accum_start int) int { mut _accum := 0 _accum = accum_start for i := 0; i < a.len; i++ { _accum = iter(_accum, a[i]) } return _accum } // []int == []int (also for: i64, f32, f64, byte, string) fn array_eq(a1, a2 []T) bool { if a1.len != a2.len { return false } for i := 0; i < a1.len; i++ { if a1[i] != a2[i] { return false } } return true } pub fn (a []int) eq(a2 []int) bool { return array_eq(a, a2) } pub fn (a []i64) eq(a2 []i64) bool { return array_eq(a, a2) } pub fn (a []string) eq(a2 []string) bool { return array_eq(a, a2) } pub fn (a []byte) eq(a2 []byte) bool { return array_eq(a, a2) } pub fn (a []f32) eq(a2 []f32) bool { return array_eq(a, a2) }