import math // Tests are based on and verified from practice examples of Khan Academy // https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers fn test_complex_addition() { mut c1 := math.complex(0,-10) mut c2 := math.complex(-40,8) mut result := c1 + c2 assert result.equals(math.complex(-40,-2)) c1 = math.complex(-71,2) c2 = math.complex(88,-12) result = c1 + c2 assert result.equals(math.complex(17,-10)) c1 = math.complex(0,-30) c2 = math.complex(52,-30) result = c1 + c2 assert result.equals(math.complex(52,-60)) c1 = math.complex(12,-9) c2 = math.complex(32,-6) result = c1 + c2 assert result.equals(math.complex(44,-15)) } fn test_complex_subtraction() { mut c1 := math.complex(-8,0) mut c2 := math.complex(6,30) mut result := c1 - c2 assert result.equals(math.complex(-14,-30)) c1 = math.complex(-19,7) c2 = math.complex(29,32) result = c1 - c2 assert result.equals(math.complex(-48,-25)) c1 = math.complex(12,0) c2 = math.complex(23,13) result = c1 - c2 assert result.equals(math.complex(-11,-13)) c1 = math.complex(-14,3) c2 = math.complex(0,14) result = c1 - c2 assert result.equals(math.complex(-14,-11)) } fn test_complex_multiplication() { mut c1 := math.complex(1,2) mut c2 := math.complex(1,-4) mut result := c1.multiply(c2) assert result.equals(math.complex(9,-2)) c1 = math.complex(-4,-4) c2 = math.complex(-5,-3) result = c1.multiply(c2) assert result.equals(math.complex(8,32)) c1 = math.complex(4,4) c2 = math.complex(-2,-5) result = c1.multiply(c2) assert result.equals(math.complex(12,-28)) c1 = math.complex(2,-2) c2 = math.complex(4,-4) result = c1.multiply(c2) assert result.equals(math.complex(0,-16)) } fn test_complex_division() { mut c1 := math.complex(-9,-6) mut c2 := math.complex(-3,-2) mut result := c1.divide(c2) assert result.equals(math.complex(3,0)) c1 = math.complex(-23,11) c2 = math.complex(5,1) result = c1.divide(c2) assert result.equals(math.complex(-4,3)) c1 = math.complex(8,-2) c2 = math.complex(-4,1) result = c1.divide(c2) assert result.equals(math.complex(-2,0)) c1 = math.complex(11,24) c2 = math.complex(-4,-1) result = c1.divide(c2) assert result.equals(math.complex(-4,-5)) } fn test_complex_conjugate() { mut c1 := math.complex(0,8) mut result := c1.conjugate() assert result.equals(math.complex(0,-8)) c1 = math.complex(7,3) result = c1.conjugate() assert result.equals(math.complex(7,-3)) c1 = math.complex(2,2) result = c1.conjugate() assert result.equals(math.complex(2,-2)) c1 = math.complex(7,0) result = c1.conjugate() assert result.equals(math.complex(7,0)) } fn test_complex_equals() { mut c1 := math.complex(0,8) mut c2 := math.complex(0,8) assert c1.equals(c2) c1 = math.complex(-3,19) c2 = math.complex(-3,19) assert c1.equals(c2) } fn test_complex_abs() { mut c1 := math.complex(3,4) assert c1.abs() == 5 c1 = math.complex(1,2) assert c1.abs() == math.sqrt(5) assert c1.abs() == c1.conjugate().abs() c1 = math.complex(7,0) assert c1.abs() == 7 } fn test_complex_angle(){ mut c := math.complex(1, 0) assert c.angle() * 180 / math.Pi == 0 c = math.complex(1, 1) assert c.angle() * 180 / math.Pi == 45 c = math.complex(0, 1) assert c.angle() * 180 / math.Pi == 90 c = math.complex(-1, 1) assert c.angle() * 180 / math.Pi == 135 c = math.complex(-1, -1) assert c.angle() * 180 / math.Pi == -135 mut cc := c.conjugate() assert cc.angle() + c.angle() == 0 } fn test_complex_addinv() { // Tests were also verified on Wolfram Alpha mut c1 := math.complex(5,7) mut c2 := math.complex(-5,-7) mut result := c1.addinv() assert result.equals(c2) c1 = math.complex(-3,4) c2 = math.complex(3,-4) result = c1.addinv() assert result.equals(c2) c1 = math.complex(-1,-2) c2 = math.complex(1,2) result = c1.addinv() assert result.equals(c2) } fn test_complex_mulinv() { // Tests were also verified on Wolfram Alpha mut c1 := math.complex(5,7) mut c2 := math.complex(0.067568,-0.094595) mut result := c1.mulinv() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = math.complex(-3,4) c2 = math.complex(-0.12,-0.16) result = c1.mulinv() assert result.str().eq(c2.str()) c1 = math.complex(-1,-2) c2 = math.complex(-0.2,0.4) result = c1.mulinv() assert result.equals(c2) } fn test_complex_mod() { // Tests were also verified on Wolfram Alpha mut c1 := math.complex(5,7) mut result := c1.mod() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq('8.602325') c1 = math.complex(-3,4) result = c1.mod() assert result == 5 c1 = math.complex(-1,-2) result = c1.mod() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq('2.236068') } fn test_complex_pow() { // Tests were also verified on Wolfram Alpha mut c1 := math.complex(5,7) mut c2 := math.complex(-24.0,70.0) mut result := c1.pow(2) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = math.complex(-3,4) c2 = math.complex(117,44) result = c1.pow(3) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = math.complex(-1,-2) c2 = math.complex(-7,-24) result = c1.pow(4) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_root() { // Tests were also verified on Wolfram Alpha mut c1 := math.complex(5,7) mut c2 := math.complex(2.607904,1.342074) mut result := c1.root(2) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = math.complex(-3,4) c2 = math.complex(1.264953,1.150614) result = c1.root(3) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = math.complex(-1,-2) c2 = math.complex(1.068059,-0.595482) result = c1.root(4) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_exp() { // Tests were also verified on Wolfram Alpha mut c1 := math.complex(5,7) mut c2 := math.complex(111.889015,97.505457) mut result := c1.exp() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = math.complex(-3,4) c2 = math.complex(-0.032543,-0.037679) result = c1.exp() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = math.complex(-1,-2) c2 = math.complex(-0.153092,-0.334512) result = c1.exp() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_ln() { // Tests were also verified on Wolfram Alpha mut c1 := math.complex(5,7) mut c2 := math.complex(2.152033,0.950547) mut result := c1.ln() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = math.complex(-3,4) c2 = math.complex(1.609438,2.214297) result = c1.ln() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = math.complex(-1,-2) c2 = math.complex(0.804719,-2.034444) result = c1.ln() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) }