module edwards25519 import rand import encoding.binary import crypto.internal.subtle // A Scalar is an integer modulo // // l = 2^252 + 27742317777372353535851937790883648493 // // which is the prime order of the edwards25519 group. // // This type works similarly to math/big.Int, and all arguments and // receivers are allowed to alias. // // The zero value is a valid zero element. struct Scalar { mut: // s is the Scalar value in little-endian. The value is always reduced // between operations. s [32]u8 } pub const ( sc_zero = Scalar{ s: [u8(0), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]! } sc_one = Scalar{ s: [u8(1), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]! } sc_minus_one = Scalar{ s: [u8(236), 211, 245, 92, 26, 99, 18, 88, 214, 156, 247, 162, 222, 249, 222, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16]! } ) // new_scalar return new zero scalar pub fn new_scalar() Scalar { return Scalar{} } // add sets s = x + y mod l, and returns s. pub fn (mut s Scalar) add(x Scalar, y Scalar) Scalar { // s = 1 * x + y mod l sc_mul_add(mut s.s, edwards25519.sc_one.s, x.s, y.s) return s } // multiply_add sets s = x * y + z mod l, and returns s. pub fn (mut s Scalar) multiply_add(x Scalar, y Scalar, z Scalar) Scalar { sc_mul_add(mut s.s, x.s, y.s, z.s) return s } // subtract sets s = x - y mod l, and returns s. pub fn (mut s Scalar) subtract(x Scalar, y Scalar) Scalar { // s = -1 * y + x mod l sc_mul_add(mut s.s, edwards25519.sc_minus_one.s, y.s, x.s) return s } // negate sets s = -x mod l, and returns s. pub fn (mut s Scalar) negate(x Scalar) Scalar { // s = -1 * x + 0 mod l sc_mul_add(mut s.s, edwards25519.sc_minus_one.s, x.s, edwards25519.sc_zero.s) return s } // multiply sets s = x * y mod l, and returns s. pub fn (mut s Scalar) multiply(x Scalar, y Scalar) Scalar { // s = x * y + 0 mod l sc_mul_add(mut s.s, x.s, y.s, edwards25519.sc_zero.s) return s } // set sets s = x, and returns s. pub fn (mut s Scalar) set(x Scalar) Scalar { s = x return s } // set_uniform_bytes sets s to an uniformly distributed value given 64 uniformly // distributed random bytes. If x is not of the right length, set_uniform_bytes // returns an error, and the receiver is unchanged. pub fn (mut s Scalar) set_uniform_bytes(x []u8) ?Scalar { if x.len != 64 { return error('edwards25519: invalid set_uniform_bytes input length') } mut wide_bytes := []u8{len: 64} copy(mut wide_bytes, x) // for i, item in x { // wide_bytes[i] = item //} sc_reduce(mut s.s, mut wide_bytes) return s } // set_canonical_bytes sets s = x, where x is a 32-byte little-endian encoding of // s, and returns s. If x is not a canonical encoding of s, set_canonical_bytes // returns an error, and the receiver is unchanged. pub fn (mut s Scalar) set_canonical_bytes(x []u8) ?Scalar { if x.len != 32 { return error('invalid scalar length') } // mut bb := []u8{len:32} mut ss := Scalar{} for i, item in x { ss.s[i] = item } //_ := copy(mut ss.s[..], x) //its not working if !is_reduced(ss) { return error('invalid scalar encoding') } s.s = ss.s return s } // is_reduced returns whether the given scalar is reduced modulo l. fn is_reduced(s Scalar) bool { for i := s.s.len - 1; i >= 0; i-- { if s.s[i] > edwards25519.sc_minus_one.s[i] { return false } if s.s[i] < edwards25519.sc_minus_one.s[i] { return true } /* switch { case s.s[i] > sc_minus_one.s[i]: return false case s.s[i] < sc_minus_one.s[i]: return true } */ } return true } // set_bytes_with_clamping applies the buffer pruning described in RFC 8032, // Section 5.1.5 (also known as clamping) and sets s to the result. The input // must be 32 bytes, and it is not modified. If x is not of the right length, // `set_bytes_with_clamping` returns an error, and the receiver is unchanged. // // Note that since Scalar values are always reduced modulo the prime order of // the curve, the resulting value will not preserve any of the cofactor-clearing // properties that clamping is meant to provide. It will however work as // expected as long as it is applied to points on the prime order subgroup, like // in Ed25519. In fact, it is lost to history why RFC 8032 adopted the // irrelevant RFC 7748 clamping, but it is now required for compatibility. pub fn (mut s Scalar) set_bytes_with_clamping(x []u8) ?Scalar { // The description above omits the purpose of the high bits of the clamping // for brevity, but those are also lost to reductions, and are also // irrelevant to edwards25519 as they protect against a specific // implementation bug that was once observed in a generic Montgomery ladder. if x.len != 32 { return error('edwards25519: invalid set_bytes_with_clamping input length') } mut wide_bytes := []u8{len: 64, cap: 64} copy(mut wide_bytes, x) // for i, item in x { // wide_bytes[i] = item //} wide_bytes[0] &= 248 wide_bytes[31] &= 63 wide_bytes[31] |= 64 sc_reduce(mut s.s, mut wide_bytes) return s } // bytes returns the canonical 32-byte little-endian encoding of s. pub fn (mut s Scalar) bytes() []u8 { mut buf := []u8{len: 32} copy(mut buf, s.s[..]) return buf } // equal returns 1 if s and t are equal, and 0 otherwise. pub fn (s Scalar) equal(t Scalar) int { return subtle.constant_time_compare(s.s[..], t.s[..]) } // sc_mul_add and sc_reduce are ported from the public domain, “ref10” // implementation of ed25519 from SUPERCOP. fn load3(inp []u8) i64 { mut r := i64(inp[0]) r |= i64(inp[1]) * 256 // << 8 r |= i64(inp[2]) * 65536 // << 16 return r } fn load4(inp []u8) i64 { mut r := i64(inp[0]) r |= i64(inp[1]) * 256 r |= i64(inp[2]) * 65536 r |= i64(inp[3]) * 16777216 return r } // Input: // a[0]+256*a[1]+...+256^31*a[31] = a // b[0]+256*b[1]+...+256^31*b[31] = b // c[0]+256*c[1]+...+256^31*c[31] = c // // Output: // s[0]+256*s[1]+...+256^31*s[31] = (ab+c) mod l // where l = 2^252 + 27742317777372353535851937790883648493. fn sc_mul_add(mut s [32]u8, a [32]u8, b [32]u8, c [32]u8) { a0 := 2097151 & load3(a[..]) a1 := 2097151 & (load4(a[2..]) >> 5) a2 := 2097151 & (load3(a[5..]) >> 2) a3 := 2097151 & (load4(a[7..]) >> 7) a4 := 2097151 & (load4(a[10..]) >> 4) a5 := 2097151 & (load3(a[13..]) >> 1) a6 := 2097151 & (load4(a[15..]) >> 6) a7 := 2097151 & (load3(a[18..]) >> 3) a8 := 2097151 & load3(a[21..]) a9 := 2097151 & (load4(a[23..]) >> 5) a10 := 2097151 & (load3(a[26..]) >> 2) a11 := (load4(a[28..]) >> 7) b0 := 2097151 & load3(b[..]) b1 := 2097151 & (load4(b[2..]) >> 5) b2 := 2097151 & (load3(b[5..]) >> 2) b3 := 2097151 & (load4(b[7..]) >> 7) b4 := 2097151 & (load4(b[10..]) >> 4) b5 := 2097151 & (load3(b[13..]) >> 1) b6 := 2097151 & (load4(b[15..]) >> 6) b7 := 2097151 & (load3(b[18..]) >> 3) b8 := 2097151 & load3(b[21..]) b9 := 2097151 & (load4(b[23..]) >> 5) b10 := 2097151 & (load3(b[26..]) >> 2) b11 := (load4(b[28..]) >> 7) c0 := 2097151 & load3(c[..]) c1 := 2097151 & (load4(c[2..]) >> 5) c2 := 2097151 & (load3(c[5..]) >> 2) c3 := 2097151 & (load4(c[7..]) >> 7) c4 := 2097151 & (load4(c[10..]) >> 4) c5 := 2097151 & (load3(c[13..]) >> 1) c6 := 2097151 & (load4(c[15..]) >> 6) c7 := 2097151 & (load3(c[18..]) >> 3) c8 := 2097151 & load3(c[21..]) c9 := 2097151 & (load4(c[23..]) >> 5) c10 := 2097151 & (load3(c[26..]) >> 2) c11 := (load4(c[28..]) >> 7) mut carry := [23]i64{} // original one // mut carry := [23]u64{} mut s0 := c0 + a0 * b0 mut s1 := c1 + a0 * b1 + a1 * b0 mut s2 := c2 + a0 * b2 + a1 * b1 + a2 * b0 mut s3 := c3 + a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 mut s4 := c4 + a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 mut s5 := c5 + a0 * b5 + a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 + a5 * b0 mut s6 := c6 + a0 * b6 + a1 * b5 + a2 * b4 + a3 * b3 + a4 * b2 + a5 * b1 + a6 * b0 mut s7 := c7 + a0 * b7 + a1 * b6 + a2 * b5 + a3 * b4 + a4 * b3 + a5 * b2 + a6 * b1 + a7 * b0 mut s8 := c8 + a0 * b8 + a1 * b7 + a2 * b6 + a3 * b5 + a4 * b4 + a5 * b3 + a6 * b2 + a7 * b1 + a8 * b0 mut s9 := c9 + a0 * b9 + a1 * b8 + a2 * b7 + a3 * b6 + a4 * b5 + a5 * b4 + a6 * b3 + a7 * b2 + a8 * b1 + a9 * b0 mut s10 := c10 + a0 * b10 + a1 * b9 + a2 * b8 + a3 * b7 + a4 * b6 + a5 * b5 + a6 * b4 + a7 * b3 + a8 * b2 + a9 * b1 + a10 * b0 mut s11 := c11 + a0 * b11 + a1 * b10 + a2 * b9 + a3 * b8 + a4 * b7 + a5 * b6 + a6 * b5 + a7 * b4 + a8 * b3 + a9 * b2 + a10 * b1 + a11 * b0 mut s12 := a1 * b11 + a2 * b10 + a3 * b9 + a4 * b8 + a5 * b7 + a6 * b6 + a7 * b5 + a8 * b4 + a9 * b3 + a10 * b2 + a11 * b1 mut s13 := a2 * b11 + a3 * b10 + a4 * b9 + a5 * b8 + a6 * b7 + a7 * b6 + a8 * b5 + a9 * b4 + a10 * b3 + a11 * b2 mut s14 := a3 * b11 + a4 * b10 + a5 * b9 + a6 * b8 + a7 * b7 + a8 * b6 + a9 * b5 + a10 * b4 + a11 * b3 mut s15 := a4 * b11 + a5 * b10 + a6 * b9 + a7 * b8 + a8 * b7 + a9 * b6 + a10 * b5 + a11 * b4 mut s16 := a5 * b11 + a6 * b10 + a7 * b9 + a8 * b8 + a9 * b7 + a10 * b6 + a11 * b5 mut s17 := a6 * b11 + a7 * b10 + a8 * b9 + a9 * b8 + a10 * b7 + a11 * b6 mut s18 := a7 * b11 + a8 * b10 + a9 * b9 + a10 * b8 + a11 * b7 mut s19 := a8 * b11 + a9 * b10 + a10 * b9 + a11 * b8 mut s20 := a9 * b11 + a10 * b10 + a11 * b9 mut s21 := a10 * b11 + a11 * b10 mut s22 := a11 * b11 mut s23 := i64(0) // original // mut s23 := u64(0) // carry[0] = (s0 + (1048576)) >> 21 carry[0] = (s0 + (1048576)) >> 21 s1 += carry[0] s0 -= carry[0] * 2097152 carry[2] = (s2 + (1048576)) >> 21 s3 += carry[2] s2 -= carry[2] * 2097152 carry[4] = (s4 + (1048576)) >> 21 s5 += carry[4] s4 -= carry[4] * 2097152 carry[6] = (s6 + (1048576)) >> 21 s7 += carry[6] s6 -= carry[6] * 2097152 carry[8] = (s8 + (1048576)) >> 21 s9 += carry[8] s8 -= carry[8] * 2097152 carry[10] = (s10 + (1048576)) >> 21 s11 += carry[10] s10 -= carry[10] * 2097152 carry[12] = (s12 + (1048576)) >> 21 s13 += carry[12] s12 -= carry[12] * 2097152 carry[14] = (s14 + (1048576)) >> 21 s15 += carry[14] s14 -= carry[14] * 2097152 carry[16] = (s16 + (1048576)) >> 21 s17 += carry[16] s16 -= carry[16] * 2097152 carry[18] = (s18 + (1048576)) >> 21 s19 += carry[18] s18 -= carry[18] * 2097152 carry[20] = (s20 + (1048576)) >> 21 s21 += carry[20] s20 -= carry[20] * 2097152 carry[22] = (s22 + (1048576)) >> 21 s23 += carry[22] s22 -= carry[22] * 2097152 carry[1] = (s1 + (1048576)) >> 21 s2 += carry[1] s1 -= carry[1] * 2097152 carry[3] = (s3 + (1048576)) >> 21 s4 += carry[3] s3 -= carry[3] * 2097152 carry[5] = (s5 + (1048576)) >> 21 s6 += carry[5] s5 -= carry[5] * 2097152 carry[7] = (s7 + (1048576)) >> 21 s8 += carry[7] s7 -= carry[7] * 2097152 carry[9] = (s9 + (1048576)) >> 21 s10 += carry[9] s9 -= carry[9] * 2097152 carry[11] = (s11 + (1048576)) >> 21 s12 += carry[11] s11 -= carry[11] * 2097152 carry[13] = (s13 + (1048576)) >> 21 s14 += carry[13] s13 -= carry[13] * 2097152 carry[15] = (s15 + (1048576)) >> 21 s16 += carry[15] s15 -= carry[15] * 2097152 carry[17] = (s17 + (1048576)) >> 21 s18 += carry[17] s17 -= carry[17] * 2097152 carry[19] = (s19 + (1048576)) >> 21 s20 += carry[19] s19 -= carry[19] * 2097152 carry[21] = (s21 + (1048576)) >> 21 s22 += carry[21] s21 -= carry[21] * 2097152 s11 += s23 * 666643 s12 += s23 * 470296 s13 += s23 * 654183 s14 -= s23 * 997805 s15 += s23 * 136657 s16 -= s23 * 683901 s23 = 0 s10 += s22 * 666643 s11 += s22 * 470296 s12 += s22 * 654183 s13 -= s22 * 997805 s14 += s22 * 136657 s15 -= s22 * 683901 s22 = 0 s9 += s21 * 666643 s10 += s21 * 470296 s11 += s21 * 654183 s12 -= s21 * 997805 s13 += s21 * 136657 s14 -= s21 * 683901 s21 = 0 s8 += s20 * 666643 s9 += s20 * 470296 s10 += s20 * 654183 s11 -= s20 * 997805 s12 += s20 * 136657 s13 -= s20 * 683901 s20 = 0 s7 += s19 * 666643 s8 += s19 * 470296 s9 += s19 * 654183 s10 -= s19 * 997805 s11 += s19 * 136657 s12 -= s19 * 683901 s19 = 0 s6 += s18 * 666643 s7 += s18 * 470296 s8 += s18 * 654183 s9 -= s18 * 997805 s10 += s18 * 136657 s11 -= s18 * 683901 s18 = 0 carry[6] = (s6 + (1048576)) >> 21 s7 += carry[6] s6 -= carry[6] * 2097152 carry[8] = (s8 + (1048576)) >> 21 s9 += carry[8] s8 -= carry[8] * 2097152 carry[10] = (s10 + (1048576)) >> 21 s11 += carry[10] s10 -= carry[10] * 2097152 carry[12] = (s12 + (1048576)) >> 21 s13 += carry[12] s12 -= carry[12] * 2097152 carry[14] = (s14 + (1048576)) >> 21 s15 += carry[14] s14 -= carry[14] * 2097152 carry[16] = (s16 + (1048576)) >> 21 s17 += carry[16] s16 -= carry[16] * 2097152 carry[7] = (s7 + (1048576)) >> 21 s8 += carry[7] s7 -= carry[7] * 2097152 carry[9] = (s9 + (1048576)) >> 21 s10 += carry[9] s9 -= carry[9] * 2097152 carry[11] = (s11 + (1048576)) >> 21 s12 += carry[11] s11 -= carry[11] * 2097152 carry[13] = (s13 + (1048576)) >> 21 s14 += carry[13] s13 -= carry[13] * 2097152 carry[15] = (s15 + (1048576)) >> 21 s16 += carry[15] s15 -= carry[15] * 2097152 s5 += s17 * 666643 s6 += s17 * 470296 s7 += s17 * 654183 s8 -= s17 * 997805 s9 += s17 * 136657 s10 -= s17 * 683901 s17 = 0 s4 += s16 * 666643 s5 += s16 * 470296 s6 += s16 * 654183 s7 -= s16 * 997805 s8 += s16 * 136657 s9 -= s16 * 683901 s16 = 0 s3 += s15 * 666643 s4 += s15 * 470296 s5 += s15 * 654183 s6 -= s15 * 997805 s7 += s15 * 136657 s8 -= s15 * 683901 s15 = 0 s2 += s14 * 666643 s3 += s14 * 470296 s4 += s14 * 654183 s5 -= s14 * 997805 s6 += s14 * 136657 s7 -= s14 * 683901 s14 = 0 s1 += s13 * 666643 s2 += s13 * 470296 s3 += s13 * 654183 s4 -= s13 * 997805 s5 += s13 * 136657 s6 -= s13 * 683901 s13 = 0 s0 += s12 * 666643 s1 += s12 * 470296 s2 += s12 * 654183 s3 -= s12 * 997805 s4 += s12 * 136657 s5 -= s12 * 683901 s12 = 0 carry[0] = (s0 + (1048576)) >> 21 s1 += carry[0] s0 -= carry[0] * 2097152 carry[2] = (s2 + (1048576)) >> 21 s3 += carry[2] s2 -= carry[2] * 2097152 carry[4] = (s4 + (1048576)) >> 21 s5 += carry[4] s4 -= carry[4] * 2097152 carry[6] = (s6 + (1048576)) >> 21 s7 += carry[6] s6 -= carry[6] * 2097152 carry[8] = (s8 + (1048576)) >> 21 s9 += carry[8] s8 -= carry[8] * 2097152 carry[10] = (s10 + (1048576)) >> 21 s11 += carry[10] s10 -= carry[10] * 2097152 carry[1] = (s1 + (1048576)) >> 21 s2 += carry[1] s1 -= carry[1] * 2097152 carry[3] = (s3 + (1048576)) >> 21 s4 += carry[3] s3 -= carry[3] * 2097152 carry[5] = (s5 + (1048576)) >> 21 s6 += carry[5] s5 -= carry[5] * 2097152 carry[7] = (s7 + (1048576)) >> 21 s8 += carry[7] s7 -= carry[7] * 2097152 carry[9] = (s9 + (1048576)) >> 21 s10 += carry[9] s9 -= carry[9] * 2097152 carry[11] = (s11 + (1048576)) >> 21 s12 += carry[11] s11 -= carry[11] * 2097152 s0 += s12 * 666643 s1 += s12 * 470296 s2 += s12 * 654183 s3 -= s12 * 997805 s4 += s12 * 136657 s5 -= s12 * 683901 s12 = 0 carry[0] = s0 >> 21 s1 += carry[0] s0 -= carry[0] * 2097152 carry[1] = s1 >> 21 s2 += carry[1] s1 -= carry[1] * 2097152 carry[2] = s2 >> 21 s3 += carry[2] s2 -= carry[2] * 2097152 carry[3] = s3 >> 21 s4 += carry[3] s3 -= carry[3] * 2097152 carry[4] = s4 >> 21 s5 += carry[4] s4 -= carry[4] * 2097152 carry[5] = s5 >> 21 s6 += carry[5] s5 -= carry[5] * 2097152 carry[6] = s6 >> 21 s7 += carry[6] s6 -= carry[6] * 2097152 carry[7] = s7 >> 21 s8 += carry[7] s7 -= carry[7] * 2097152 carry[8] = s8 >> 21 s9 += carry[8] s8 -= carry[8] * 2097152 carry[9] = s9 >> 21 s10 += carry[9] s9 -= carry[9] * 2097152 carry[10] = s10 >> 21 s11 += carry[10] s10 -= carry[10] * 2097152 carry[11] = s11 >> 21 s12 += carry[11] s11 -= carry[11] * 2097152 s0 += s12 * 666643 s1 += s12 * 470296 s2 += s12 * 654183 s3 -= s12 * 997805 s4 += s12 * 136657 s5 -= s12 * 683901 s12 = 0 carry[0] = s0 >> 21 s1 += carry[0] s0 -= carry[0] * 2097152 carry[1] = s1 >> 21 s2 += carry[1] s1 -= carry[1] * 2097152 carry[2] = s2 >> 21 s3 += carry[2] s2 -= carry[2] * 2097152 carry[3] = s3 >> 21 s4 += carry[3] s3 -= carry[3] * 2097152 carry[4] = s4 >> 21 s5 += carry[4] s4 -= carry[4] * 2097152 carry[5] = s5 >> 21 s6 += carry[5] s5 -= carry[5] * 2097152 carry[6] = s6 >> 21 s7 += carry[6] s6 -= carry[6] * 2097152 carry[7] = s7 >> 21 s8 += carry[7] s7 -= carry[7] * 2097152 carry[8] = s8 >> 21 s9 += carry[8] s8 -= carry[8] * 2097152 carry[9] = s9 >> 21 s10 += carry[9] s9 -= carry[9] * 2097152 carry[10] = s10 >> 21 s11 += carry[10] s10 -= carry[10] * 2097152 s[0] = u8(s0 >> 0) s[1] = u8(s0 >> 8) s[2] = u8((s0 >> 16) | (s1 * 32)) s[3] = u8(s1 >> 3) s[4] = u8(s1 >> 11) s[5] = u8((s1 >> 19) | (s2 * 4)) s[6] = u8(s2 >> 6) s[7] = u8((s2 >> 14) | (s3 * 128)) s[8] = u8(s3 >> 1) s[9] = u8(s3 >> 9) s[10] = u8((s3 >> 17) | (s4 * 16)) s[11] = u8(s4 >> 4) s[12] = u8(s4 >> 12) s[13] = u8((s4 >> 20) | (s5 * 2)) s[14] = u8(s5 >> 7) s[15] = u8((s5 >> 15) | (s6 * 64)) s[16] = u8(s6 >> 2) s[17] = u8(s6 >> 10) s[18] = u8((s6 >> 18) | (s7 * 8)) s[19] = u8(s7 >> 5) s[20] = u8(s7 >> 13) s[21] = u8(s8 >> 0) s[22] = u8(s8 >> 8) s[23] = u8((s8 >> 16) | (s9 * 32)) s[24] = u8(s9 >> 3) s[25] = u8(s9 >> 11) s[26] = u8((s9 >> 19) | (s10 * 4)) s[27] = u8(s10 >> 6) s[28] = u8((s10 >> 14) | (s11 * 128)) s[29] = u8(s11 >> 1) s[30] = u8(s11 >> 9) s[31] = u8(s11 >> 17) } // Input: // s[0]+256*s[1]+...+256^63*s[63] = s // // Output: // s[0]+256*s[1]+...+256^31*s[31] = s mod l // where l = 2^252 + 27742317777372353535851937790883648493. fn sc_reduce(mut out [32]u8, mut s []u8) { assert out.len == 32 assert s.len == 64 mut s0 := 2097151 & load3(s[..]) mut s1 := 2097151 & (load4(s[2..]) >> 5) mut s2 := 2097151 & (load3(s[5..]) >> 2) mut s3 := 2097151 & (load4(s[7..]) >> 7) mut s4 := 2097151 & (load4(s[10..]) >> 4) mut s5 := 2097151 & (load3(s[13..]) >> 1) mut s6 := 2097151 & (load4(s[15..]) >> 6) mut s7 := 2097151 & (load3(s[18..]) >> 3) mut s8 := 2097151 & load3(s[21..]) mut s9 := 2097151 & (load4(s[23..]) >> 5) mut s10 := 2097151 & (load3(s[26..]) >> 2) mut s11 := 2097151 & (load4(s[28..]) >> 7) mut s12 := 2097151 & (load4(s[31..]) >> 4) mut s13 := 2097151 & (load3(s[34..]) >> 1) mut s14 := 2097151 & (load4(s[36..]) >> 6) mut s15 := 2097151 & (load3(s[39..]) >> 3) mut s16 := 2097151 & load3(s[42..]) mut s17 := 2097151 & (load4(s[44..]) >> 5) mut s18 := 2097151 & (load3(s[47..]) >> 2) mut s19 := 2097151 & (load4(s[49..]) >> 7) mut s20 := 2097151 & (load4(s[52..]) >> 4) mut s21 := 2097151 & (load3(s[55..]) >> 1) mut s22 := 2097151 & (load4(s[57..]) >> 6) mut s23 := (load4(s[60..]) >> 3) s11 += s23 * 666643 s12 += s23 * 470296 s13 += s23 * 654183 s14 -= s23 * 997805 s15 += s23 * 136657 s16 -= s23 * 683901 s23 = 0 s10 += s22 * 666643 s11 += s22 * 470296 s12 += s22 * 654183 s13 -= s22 * 997805 s14 += s22 * 136657 s15 -= s22 * 683901 s22 = 0 s9 += s21 * 666643 s10 += s21 * 470296 s11 += s21 * 654183 s12 -= s21 * 997805 s13 += s21 * 136657 s14 -= s21 * 683901 s21 = 0 s8 += s20 * 666643 s9 += s20 * 470296 s10 += s20 * 654183 s11 -= s20 * 997805 s12 += s20 * 136657 s13 -= s20 * 683901 s20 = 0 s7 += s19 * 666643 s8 += s19 * 470296 s9 += s19 * 654183 s10 -= s19 * 997805 s11 += s19 * 136657 s12 -= s19 * 683901 s19 = 0 s6 += s18 * 666643 s7 += s18 * 470296 s8 += s18 * 654183 s9 -= s18 * 997805 s10 += s18 * 136657 s11 -= s18 * 683901 s18 = 0 mut carry := [17]i64{} // original one // mut carry := [17]u64{} carry[6] = (s6 + (1048576)) >> 21 s7 += carry[6] s6 -= carry[6] * 2097152 carry[8] = (s8 + (1048576)) >> 21 s9 += carry[8] s8 -= carry[8] * 2097152 carry[10] = (s10 + (1048576)) >> 21 s11 += carry[10] s10 -= carry[10] * 2097152 carry[12] = (s12 + (1048576)) >> 21 s13 += carry[12] s12 -= carry[12] * 2097152 carry[14] = (s14 + (1048576)) >> 21 s15 += carry[14] s14 -= carry[14] * 2097152 carry[16] = (s16 + (1048576)) >> 21 s17 += carry[16] s16 -= carry[16] * 2097152 carry[7] = (s7 + (1048576)) >> 21 s8 += carry[7] s7 -= carry[7] * 2097152 carry[9] = (s9 + (1048576)) >> 21 s10 += carry[9] s9 -= carry[9] * 2097152 carry[11] = (s11 + (1048576)) >> 21 s12 += carry[11] s11 -= carry[11] * 2097152 carry[13] = (s13 + (1048576)) >> 21 s14 += carry[13] s13 -= carry[13] * 2097152 carry[15] = (s15 + (1048576)) >> 21 s16 += carry[15] s15 -= carry[15] * 2097152 s5 += s17 * 666643 s6 += s17 * 470296 s7 += s17 * 654183 s8 -= s17 * 997805 s9 += s17 * 136657 s10 -= s17 * 683901 s17 = 0 s4 += s16 * 666643 s5 += s16 * 470296 s6 += s16 * 654183 s7 -= s16 * 997805 s8 += s16 * 136657 s9 -= s16 * 683901 s16 = 0 s3 += s15 * 666643 s4 += s15 * 470296 s5 += s15 * 654183 s6 -= s15 * 997805 s7 += s15 * 136657 s8 -= s15 * 683901 s15 = 0 s2 += s14 * 666643 s3 += s14 * 470296 s4 += s14 * 654183 s5 -= s14 * 997805 s6 += s14 * 136657 s7 -= s14 * 683901 s14 = 0 s1 += s13 * 666643 s2 += s13 * 470296 s3 += s13 * 654183 s4 -= s13 * 997805 s5 += s13 * 136657 s6 -= s13 * 683901 s13 = 0 s0 += s12 * 666643 s1 += s12 * 470296 s2 += s12 * 654183 s3 -= s12 * 997805 s4 += s12 * 136657 s5 -= s12 * 683901 s12 = 0 carry[0] = (s0 + (1048576)) >> 21 s1 += carry[0] s0 -= carry[0] * 2097152 carry[2] = (s2 + (1048576)) >> 21 s3 += carry[2] s2 -= carry[2] * 2097152 carry[4] = (s4 + (1048576)) >> 21 s5 += carry[4] s4 -= carry[4] * 2097152 carry[6] = (s6 + (1048576)) >> 21 s7 += carry[6] s6 -= carry[6] * 2097152 carry[8] = (s8 + (1048576)) >> 21 s9 += carry[8] s8 -= carry[8] * 2097152 carry[10] = (s10 + (1048576)) >> 21 s11 += carry[10] s10 -= carry[10] * 2097152 carry[1] = (s1 + (1048576)) >> 21 s2 += carry[1] s1 -= carry[1] * 2097152 carry[3] = (s3 + (1048576)) >> 21 s4 += carry[3] s3 -= carry[3] * 2097152 carry[5] = (s5 + (1048576)) >> 21 s6 += carry[5] s5 -= carry[5] * 2097152 carry[7] = (s7 + (1048576)) >> 21 s8 += carry[7] s7 -= carry[7] * 2097152 carry[9] = (s9 + (1048576)) >> 21 s10 += carry[9] s9 -= carry[9] * 2097152 carry[11] = (s11 + (1048576)) >> 21 s12 += carry[11] s11 -= carry[11] * 2097152 s0 += s12 * 666643 s1 += s12 * 470296 s2 += s12 * 654183 s3 -= s12 * 997805 s4 += s12 * 136657 s5 -= s12 * 683901 s12 = 0 carry[0] = s0 >> 21 s1 += carry[0] s0 -= carry[0] * 2097152 carry[1] = s1 >> 21 s2 += carry[1] s1 -= carry[1] * 2097152 carry[2] = s2 >> 21 s3 += carry[2] s2 -= carry[2] * 2097152 carry[3] = s3 >> 21 s4 += carry[3] s3 -= carry[3] * 2097152 carry[4] = s4 >> 21 s5 += carry[4] s4 -= carry[4] * 2097152 carry[5] = s5 >> 21 s6 += carry[5] s5 -= carry[5] * 2097152 carry[6] = s6 >> 21 s7 += carry[6] s6 -= carry[6] * 2097152 carry[7] = s7 >> 21 s8 += carry[7] s7 -= carry[7] * 2097152 carry[8] = s8 >> 21 s9 += carry[8] s8 -= carry[8] * 2097152 carry[9] = s9 >> 21 s10 += carry[9] s9 -= carry[9] * 2097152 carry[10] = s10 >> 21 s11 += carry[10] s10 -= carry[10] * 2097152 carry[11] = s11 >> 21 s12 += carry[11] s11 -= carry[11] * 2097152 s0 += s12 * 666643 s1 += s12 * 470296 s2 += s12 * 654183 s3 -= s12 * 997805 s4 += s12 * 136657 s5 -= s12 * 683901 s12 = 0 carry[0] = s0 >> 21 s1 += carry[0] s0 -= carry[0] * 2097152 carry[1] = s1 >> 21 s2 += carry[1] s1 -= carry[1] * 2097152 carry[2] = s2 >> 21 s3 += carry[2] s2 -= carry[2] * 2097152 carry[3] = s3 >> 21 s4 += carry[3] s3 -= carry[3] * 2097152 carry[4] = s4 >> 21 s5 += carry[4] s4 -= carry[4] * 2097152 carry[5] = s5 >> 21 s6 += carry[5] s5 -= carry[5] * 2097152 carry[6] = s6 >> 21 s7 += carry[6] s6 -= carry[6] * 2097152 carry[7] = s7 >> 21 s8 += carry[7] s7 -= carry[7] * 2097152 carry[8] = s8 >> 21 s9 += carry[8] s8 -= carry[8] * 2097152 carry[9] = s9 >> 21 s10 += carry[9] s9 -= carry[9] * 2097152 carry[10] = s10 >> 21 s11 += carry[10] s10 -= carry[10] * 2097152 out[0] = u8(s0 >> 0) out[1] = u8(s0 >> 8) out[2] = u8((s0 >> 16) | (s1 * 32)) out[3] = u8(s1 >> 3) out[4] = u8(s1 >> 11) out[5] = u8((s1 >> 19) | (s2 * 4)) out[6] = u8(s2 >> 6) out[7] = u8((s2 >> 14) | (s3 * 128)) out[8] = u8(s3 >> 1) out[9] = u8(s3 >> 9) out[10] = u8((s3 >> 17) | (s4 * 16)) out[11] = u8(s4 >> 4) out[12] = u8(s4 >> 12) out[13] = u8((s4 >> 20) | (s5 * 2)) out[14] = u8(s5 >> 7) out[15] = u8((s5 >> 15) | (s6 * 64)) out[16] = u8(s6 >> 2) out[17] = u8(s6 >> 10) out[18] = u8((s6 >> 18) | (s7 * 8)) out[19] = u8(s7 >> 5) out[20] = u8(s7 >> 13) out[21] = u8(s8 >> 0) out[22] = u8(s8 >> 8) out[23] = u8((s8 >> 16) | (s9 * 32)) out[24] = u8(s9 >> 3) out[25] = u8(s9 >> 11) out[26] = u8((s9 >> 19) | (s10 * 4)) out[27] = u8(s10 >> 6) out[28] = u8((s10 >> 14) | (s11 * 128)) out[29] = u8(s11 >> 1) out[30] = u8(s11 >> 9) out[31] = u8(s11 >> 17) } // non_adjacent_form computes a width-w non-adjacent form for this scalar. // // w must be between 2 and 8, or non_adjacent_form will panic. pub fn (mut s Scalar) non_adjacent_form(w u32) []i8 { // This implementation is adapted from the one // in curve25519-dalek and is documented there: // https://github.com/dalek-cryptography/curve25519-dalek/blob/f630041af28e9a405255f98a8a93adca18e4315b/src/scalar.rs#L800-L871 if s.s[31] > 127 { panic('scalar has high bit set illegally') } if w < 2 { panic('w must be at least 2 by the definition of NAF') } else if w > 8 { panic('NAF digits must fit in i8') } mut naf := []i8{len: 256} mut digits := [5]u64{} for i := 0; i < 4; i++ { digits[i] = binary.little_endian_u64(s.s[i * 8..]) } width := u64(1 << w) window_mask := u64(width - 1) mut pos := u32(0) mut carry := u64(0) for pos < 256 { idx_64 := pos / 64 idx_bit := pos % 64 mut bitbuf := u64(0) if idx_bit < 64 - w { // This window's bits are contained in a single u64 bitbuf = digits[idx_64] >> idx_bit } else { // Combine the current 64 bits with bits from the next 64 bitbuf = (digits[idx_64] >> idx_bit) | (digits[1 + idx_64] << (64 - idx_bit)) } // Add carry into the current window window := carry + (bitbuf & window_mask) if window & 1 == 0 { // If the window value is even, preserve the carry and continue. // Why is the carry preserved? // If carry == 0 and window & 1 == 0, // then the next carry should be 0 // If carry == 1 and window & 1 == 0, // then bit_buf & 1 == 1 so the next carry should be 1 pos += 1 continue } if window < width / 2 { carry = 0 naf[pos] = i8(window) } else { carry = 1 naf[pos] = i8(window) - i8(width) } pos += w } return naf } fn (mut s Scalar) signed_radix16() []i8 { if s.s[31] > 127 { panic('scalar has high bit set illegally') } mut digits := []i8{len: 64} // Compute unsigned radix-16 digits: for i := 0; i < 32; i++ { digits[2 * i] = i8(s.s[i] & 15) digits[2 * i + 1] = i8((s.s[i] >> 4) & 15) } // Recenter coefficients: for i := 0; i < 63; i++ { mut carry := (digits[i] + 8) >> 4 // digits[i] -= unsafe { carry * 16 } // original one digits[i] -= unsafe { carry * 16 } // carry * 16 == carry * digits[i + 1] += carry } return digits } // utility function // generate returns a valid (reduced modulo l) Scalar with a distribution // weighted towards high, low, and edge values. fn generate_scalar(size int) ?Scalar { /* s := scZero diceRoll := rand.Intn(100) switch { case diceRoll == 0: case diceRoll == 1: s = scOne case diceRoll == 2: s = scMinusOne case diceRoll < 5: // Generate a low scalar in [0, 2^125). rand.Read(s.s[:16]) s.s[15] &= (1 * 32) - 1 case diceRoll < 10: // Generate a high scalar in [2^252, 2^252 + 2^124). s.s[31] = 1 * 16 rand.Read(s.s[:16]) s.s[15] &= (1 * 16) - 1 default: // Generate a valid scalar in [0, l) by returning [0, 2^252) which has a // negligibly different distribution (the former has a 2^-127.6 chance // of being out of the latter range). rand.Read(s.s[:]) s.s[31] &= (1 * 16) - 1 } return reflect.ValueOf(s) */ mut s := edwards25519.sc_zero diceroll := rand.intn(100) or { 0 } match true { /* case diceroll == 0: case diceroll == 1: */ diceroll == 0 || diceroll == 1 { s = edwards25519.sc_one } diceroll == 2 { s = edwards25519.sc_minus_one } diceroll < 5 { // rand.Read(s.s[:16]) // read random bytes and fill buf // using builtin rand.read([]buf) rand.read(mut s.s[..16]) // buf := rand.read(s.s[..16].len) ? // copy(mut s.s[..16], buf) /* for i, item in buf { s.s[i] = item } */ s.s[15] &= (1 * 32) - 1 // generate a low scalar in [0, 2^125). } diceroll < 10 { // generate a high scalar in [2^252, 2^252 + 2^124). s.s[31] = 1 * 16 // Read generates len(p) random bytes and writes them into p // rand.Read(s.s[:16]) rand.read(mut s.s[..16]) // buf := rand.read(s.s[..16].len) ? // copy(mut s.s[..16], buf) /* for i, item in buf { s.s[i] = item } */ s.s[15] &= (1 * 16) - 1 } else { // generate a valid scalar in [0, l) by returning [0, 2^252) which has a // negligibly different distribution (the former has a 2^-127.6 chance // of being out of the latter range). // rand.Read(s.s[:]) rand.read(mut s.s[..]) // buf := crand.read(s.s.len) ? // copy(mut s.s[..], buf) /* for i, item in buf { s.s[i] = item } */ s.s[31] &= (1 * 16) - 1 } } return s } type NotZeroScalar = Scalar fn generate_notzero_scalar(size int) ?NotZeroScalar { mut s := Scalar{} for s == edwards25519.sc_zero { s = generate_scalar(size) ? } return NotZeroScalar(s) }