// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license that can be found in the LICENSE file. module gg // import sokol.sapp import gx import sokol.gfx import os import sokol import sokol.sgl import stbi [heap] pub struct Image { pub mut: id int width int height int nr_channels int ok bool data voidptr ext string simg_ok bool simg C.sg_image path string } // DrawImageConfig struct defines the various options // that can be used to draw an image onto the screen pub struct DrawImageConfig { pub: flip_x bool flip_y bool img &Image = voidptr(0) img_id int img_rect Rect // defines the size and position on image when rendering to the screen part_rect Rect // defines the size and position of part of the image to use when rendering rotate int // amount to rotate the image in degrees z f32 color gx.Color = gx.white } pub struct Rect { pub: x f32 y f32 width f32 height f32 } fn C.sg_isvalid() bool // TODO return ?Image pub fn (mut ctx Context) create_image(file string) Image { // println('\ncreate_image("$file")') if !os.exists(file) { return Image{} } $if macos { if ctx.native_rendering { // return C.darwin_create_image(file) mut img := C.darwin_create_image(file) // println('created macos image: $img.path w=$img.width') // C.printf('p = %p\n', img.data) img.id = ctx.image_cache.len ctx.image_cache << img return img } } if !C.sg_isvalid() { // Sokol is not initialized yet, add stbi object to a queue/cache // ctx.image_queue << file stb_img := stbi.load(file) or { return Image{} } img := Image{ width: stb_img.width height: stb_img.height nr_channels: stb_img.nr_channels ok: false data: stb_img.data ext: stb_img.ext path: file id: ctx.image_cache.len } ctx.image_cache << img return img } mut img := create_image(file) img.id = ctx.image_cache.len ctx.image_cache << img return img } // TODO copypasta pub fn (mut ctx Context) create_image_with_size(file string, width int, height int) Image { if !C.sg_isvalid() { // Sokol is not initialized yet, add stbi object to a queue/cache // ctx.image_queue << file stb_img := stbi.load(file) or { return Image{} } img := Image{ width: width height: height nr_channels: stb_img.nr_channels ok: false data: stb_img.data ext: stb_img.ext path: file id: ctx.image_cache.len } ctx.image_cache << img return img } mut img := create_image(file) img.id = ctx.image_cache.len ctx.image_cache << img return img } // TODO remove this fn create_image(file string) Image { if !os.exists(file) { println('gg.create_image(): file not found: $file') return Image{} // none } stb_img := stbi.load(file) or { return Image{} } mut img := Image{ width: stb_img.width height: stb_img.height nr_channels: stb_img.nr_channels ok: stb_img.ok data: stb_img.data ext: stb_img.ext path: file } img.init_sokol_image() return img } pub fn (mut ctx Context) create_image_from_memory(buf &byte, bufsize int) Image { stb_img := stbi.load_from_memory(buf, bufsize) or { return Image{} } mut img := Image{ width: stb_img.width height: stb_img.height nr_channels: stb_img.nr_channels ok: stb_img.ok data: stb_img.data ext: stb_img.ext id: ctx.image_cache.len } ctx.image_cache << img return img } pub fn (mut ctx Context) create_image_from_byte_array(b []byte) Image { return ctx.create_image_from_memory(b.data, b.len) } pub fn (mut ctx Context) cache_image(img Image) int { ctx.image_cache << img image_idx := ctx.image_cache.len - 1 ctx.image_cache[image_idx].id = image_idx return image_idx } pub fn (mut ctx Context) get_cached_image_by_idx(image_idx int) &Image { return &ctx.image_cache[image_idx] } pub fn (mut img Image) init_sokol_image() &Image { // println('\n init sokol image $img.path ok=$img.simg_ok') mut img_desc := C.sg_image_desc{ width: img.width height: img.height num_mipmaps: 0 wrap_u: .clamp_to_edge wrap_v: .clamp_to_edge label: img.path.str d3d11_texture: 0 } img_desc.data.subimage[0][0] = C.sg_range{ ptr: img.data size: size_t(img.nr_channels * img.width * img.height) } img.simg = C.sg_make_image(&img_desc) img.simg_ok = true img.ok = true return img } pub struct StreamingImageConfig { pixel_format gfx.PixelFormat = .rgba8 wrap_u gfx.Wrap = .clamp_to_edge wrap_v gfx.Wrap = .clamp_to_edge min_filter gfx.Filter = .linear mag_filter gfx.Filter = .linear num_mipmaps int = 1 num_slices int = 1 } // new_streaming_image returns a cached `image_idx` of a special image, that // can be updated *each frame* by calling: gg.update_pixel_data(image_idx, buf) // ... where buf is a pointer to the actual pixel data for the image. // NB: you still need to call app.gg.draw_image after that, to actually draw it. pub fn (mut ctx Context) new_streaming_image(w int, h int, channels int, sicfg StreamingImageConfig) int { mut img := Image{} img.width = w img.height = h img.nr_channels = channels // 4 bytes per pixel for .rgba8, see pixel_format mut img_desc := C.sg_image_desc{ width: img.width height: img.height pixel_format: sicfg.pixel_format num_slices: 1 num_mipmaps: 1 usage: .stream wrap_u: sicfg.wrap_u wrap_v: sicfg.wrap_v min_filter: sicfg.min_filter mag_filter: sicfg.mag_filter label: img.path.str } // Sokol requires that streamed images have NO .ptr/.size initially: img_desc.data.subimage[0][0] = C.sg_range{ ptr: 0 size: size_t(0) } img.simg = C.sg_make_image(&img_desc) img.simg_ok = true img.ok = true img_idx := ctx.cache_image(img) return img_idx } // update_pixel_data is a helper for working with image streams (i.e. images, // that are updated dynamically by the CPU on each frame) pub fn (mut ctx Context) update_pixel_data(cached_image_idx int, buf &byte) { mut image := ctx.get_cached_image_by_idx(cached_image_idx) image.update_pixel_data(buf) } pub fn (mut img Image) update_pixel_data(buf &byte) { mut data := C.sg_image_data{} data.subimage[0][0].ptr = buf data.subimage[0][0].size = size_t(img.width * img.height * img.nr_channels) gfx.update_image(img.simg, &data) } // draw_image_with_config takes in a config that details how the // provided image should be drawn onto the screen pub fn (ctx &Context) draw_image_with_config(config DrawImageConfig) { id := if !isnil(config.img) { config.img.id } else { config.img_id } if id >= ctx.image_cache.len { eprintln('gg: draw_image() bad img id $id (img cache len = $ctx.image_cache.len)') return } img := ctx.image_cache[id] if !img.simg_ok { return } mut img_rect := config.img_rect if img_rect.width == 0 && img_rect.height == 0 { img_rect = Rect{img_rect.x, img_rect.y, img.width, img.height} } mut part_rect := config.part_rect if part_rect.width == 0 && part_rect.height == 0 { part_rect = Rect{part_rect.x, part_rect.y, img.width, img.height} } u0 := part_rect.x / img.width v0 := part_rect.y / img.height u1 := (part_rect.x + part_rect.width) / img.width v1 := (part_rect.y + part_rect.height) / img.height x0 := img_rect.x * ctx.scale y0 := img_rect.y * ctx.scale x1 := (img_rect.x + img_rect.width) * ctx.scale mut y1 := (img_rect.y + img_rect.height) * ctx.scale if img_rect.height == 0 { scale := f32(img.width) / f32(img_rect.width) y1 = f32(img_rect.y + int(f32(img.height) / scale)) * ctx.scale } flip_x := config.flip_x flip_y := config.flip_y mut u0f := if !flip_x { u0 } else { u1 } mut u1f := if !flip_x { u1 } else { u0 } mut v0f := if !flip_y { v0 } else { v1 } mut v1f := if !flip_y { v1 } else { v0 } sgl.load_pipeline(ctx.timage_pip) sgl.enable_texture() sgl.texture(img.simg) if config.rotate != 0 { width := img_rect.width * ctx.scale height := (if img_rect.height > 0 { img_rect.height } else { img.height }) * ctx.scale sgl.push_matrix() sgl.translate(x0 + (width / 2), y0 + (height / 2), 0) sgl.rotate(sgl.rad(-config.rotate), 0, 0, 1) sgl.translate(-x0 - (width / 2), -y0 - (height / 2), 0) } sgl.begin_quads() sgl.c4b(config.color.r, config.color.g, config.color.b, config.color.a) sgl.v3f_t2f(x0, y0, config.z, u0f, v0f) sgl.v3f_t2f(x1, y0, config.z, u1f, v0f) sgl.v3f_t2f(x1, y1, config.z, u1f, v1f) sgl.v3f_t2f(x0, y1, config.z, u0f, v1f) sgl.end() if config.rotate != 0 { sgl.pop_matrix() } sgl.disable_texture() } // Draw part of an image using uv coordinates // img_rect is the size and position (in pixels on screen) of the displayed rectangle (ie the draw_image args) // part_rect is the size and position (in absolute pixels in the image) of the wanted part // eg. On a 600*600 context, to display only the first 400*400 pixels of a 2000*2000 image // on the entire context surface, call : // draw_image_part(Rect{0, 0, 600, 600}, Rect{0, 0, 400, 400}, img) pub fn (ctx &Context) draw_image_part(img_rect Rect, part_rect Rect, img_ &Image) { ctx.draw_image_with_config( img: img_ img_rect: img_rect part_rect: part_rect ) } // draw_image draws the provided image onto the screen pub fn (ctx &Context) draw_image(x f32, y f32, width f32, height f32, img_ &Image) { $if macos { if img_.id >= ctx.image_cache.len { eprintln('gg: draw_image() bad img id $img_.id (img cache len = $ctx.image_cache.len)') return } if ctx.native_rendering { if img_.width == 0 { return } if !os.exists(img_.path) { return } C.darwin_draw_image(x, ctx.height - (y + height), width, height, img_) return } } ctx.draw_image_with_config( img: img_ img_rect: Rect{x, y, width, height} part_rect: Rect{0, 0, img_.width, img_.height} ) } // draw_image_flipped draws the provided image flipped horizontally (use `draw_image_with_config` to flip vertically) pub fn (ctx &Context) draw_image_flipped(x f32, y f32, width f32, height f32, img_ &Image) { ctx.draw_image_with_config( flip_x: true img: img_ img_rect: Rect{x, y, width, height} ) } // draw_image_by_id draws an image by its id pub fn (ctx &Context) draw_image_by_id(x f32, y f32, width f32, height f32, id int) { ctx.draw_image_with_config( img_id: id img_rect: Rect{x, y, width, height} ) } // draw_image_3d draws an image with a z depth pub fn (ctx &Context) draw_image_3d(x f32, y f32, z f32, width f32, height f32, img_ &Image) { ctx.draw_image_with_config( img: img_ img_rect: Rect{x, y, width, height} z: z ) }