/**********************************************************************
*
* Sokol 3d cube multishader demo
*
* Copyright (c) 2021 Dario Deledda. All rights reserved.
* Use of this source code is governed by an MIT license
* that can be found in the LICENSE file.
*
* HOW TO COMPILE SHADERS:
* - download the sokol shader convertor tool from https://github.com/floooh/sokol-tools-bin/archive/pre-feb2021-api-changes.tar.gz
* ( also look at https://github.com/floooh/sokol-tools/blob/master/docs/sokol-shdc.md )
* - compile the .glsl shared file with:
* linux  :  sokol-shdc --input rt_glsl_instancing.glsl --output rt_glsl_instancing.h --slang glsl330
* windows:  sokol-shdc.exe --input rt_glsl_instancing.glsl --output rt_glsl_instancing.h --slang glsl330
*						
* --slang parameter can be:
* - glsl330: desktop GL
* - glsl100: GLES2 / WebGL
* - glsl300es: GLES3 / WebGL2
* - hlsl4: D3D11
* - hlsl5: D3D11
* - metal_macos: Metal on macOS
* - metal_ios: Metal on iOS device
* - metal_sim: Metal on iOS simulator
* - wgpu: WebGPU
*
* you can have multiple platforms at the same time passing parameters like this: --slang glsl330:hlsl5:metal_macos
* for further infos have a look at the sokol shader tool docs.
*
* TODO:
* - frame counter
**********************************************************************/
import gg
import gg.m4
import gx
import math

import sokol.gfx
//import sokol.sgl

import time

const (
	win_width  = 800
	win_height = 800
	bg_color   = gx.white
	num_inst   = 16384
)

struct App {
mut:
	gg            &gg.Context
	texture       C.sg_image
	init_flag     bool
	frame_count   int

	mouse_x       int = -1
	mouse_y       int = -1
	mouse_down    bool
	
	// glsl
	cube_pip_glsl C.sg_pipeline
	cube_bind     C.sg_bindings
	
	pipe          map[string]C.sg_pipeline
	bind          map[string]C.sg_bindings
	
	// time
	ticks         i64
	
	// instances
	inst_pos     [num_inst]m4.Vec4
	
	// camera
	camera_x      f32
	camera_z      f32
}

/******************************************************************************
* GLSL Include and functions
******************************************************************************/
#flag -I @VROOT/.
#include "rt_glsl_instancing.h" #Please use sokol-shdc to generate the necessary rt_glsl_march.h file from rt_glsl_march.glsl (see the instructions at the top of this file)
fn C.instancing_shader_desc() &C.sg_shader_desc

/******************************************************************************
* Texture functions
******************************************************************************/
fn create_texture(w int, h int, buf byteptr) C.sg_image{
	sz := w * h * 4
	mut img_desc := C.sg_image_desc{
		width:         w
		height:        h
		num_mipmaps:   0
		min_filter:    .linear
		mag_filter:    .linear
		//usage: .dynamic
		wrap_u:        .clamp_to_edge
		wrap_v:        .clamp_to_edge
		label:         &byte(0)
		d3d11_texture: 0
	}
	// comment if .dynamic is enabled
	img_desc.content.subimage[0][0] = C.sg_subimage_content{
		ptr:  buf
		size: sz
	}

	sg_img := C.sg_make_image(&img_desc)
	return sg_img
}

fn destroy_texture(sg_img C.sg_image){
	C.sg_destroy_image(sg_img)
}

// Use only if usage: .dynamic is enabled
fn update_text_texture(sg_img C.sg_image, w int, h int, buf byteptr){
	sz := w * h * 4
	mut tmp_sbc := C.sg_image_content{}
	tmp_sbc.subimage[0][0] = C.sg_subimage_content {
		ptr: buf
		size: sz
	}
	C.sg_update_image(sg_img, &tmp_sbc)
}

/******************************************************************************
* Draw functions
******************************************************************************
		Cube vertex buffer with packed vertex formats for color and texture coords.
		Note that a vertex format which must be portable across all
		backends must only use the normalized integer formats
		(BYTE4N, UBYTE4N, SHORT2N, SHORT4N), which can be converted
		to floating point formats in the vertex shader inputs.
		The reason is that D3D11 cannot convert from non-normalized
		formats to floating point inputs (only to integer inputs),
		and WebGL2 / GLES2 don't support integer vertex shader inputs.
*/

struct Vertex_t {
    x f32
		y f32
		z f32
    color u32
		
		//u u16   // for compatibility with D3D11
		//v u16   // for compatibility with D3D11
		u f32
		v f32
} 

// march shader init
fn init_cube_glsl_i(mut app App) {
	/* cube vertex buffer */
	//d := u16(32767)     // for compatibility with D3D11, 32767 stand for 1
	d := f32(1.0)
	c := u32(0xFFFFFF_FF) // color RGBA8
  vertices := [
		// Face 0
		Vertex_t{-1.0, -1.0, -1.0, c,  0, 0},
		Vertex_t{ 1.0, -1.0, -1.0, c,  d, 0},
    Vertex_t{ 1.0,  1.0, -1.0, c,  d, d},
    Vertex_t{-1.0,  1.0, -1.0, c,  0, d},
		// Face 1
		Vertex_t{-1.0, -1.0,  1.0, c,  0, 0},
    Vertex_t{ 1.0, -1.0,  1.0, c,  d, 0},
    Vertex_t{ 1.0,  1.0,  1.0, c,  d, d},
    Vertex_t{-1.0,  1.0,  1.0, c,  0, d},
		// Face 2
		Vertex_t{-1.0, -1.0, -1.0, c,  0, 0},
    Vertex_t{-1.0,  1.0, -1.0, c,  d, 0},
    Vertex_t{-1.0,  1.0,  1.0, c,  d, d},
    Vertex_t{-1.0, -1.0,  1.0, c,  0, d},
		// Face 3
		Vertex_t{ 1.0, -1.0, -1.0, c,  0, 0},
    Vertex_t{ 1.0,  1.0, -1.0, c,  d, 0},
    Vertex_t{ 1.0,  1.0,  1.0, c,  d, d},
    Vertex_t{ 1.0, -1.0,  1.0, c,  0, d},
		// Face 4
		Vertex_t{-1.0, -1.0, -1.0, c,  0, 0},
    Vertex_t{-1.0, -1.0,  1.0, c,  d, 0},
    Vertex_t{ 1.0, -1.0,  1.0, c,  d, d},
    Vertex_t{ 1.0, -1.0, -1.0, c,  0, d},
		// Face 5
		Vertex_t{-1.0,  1.0, -1.0, c,  0, 0},
    Vertex_t{-1.0,  1.0,  1.0, c,  d, 0},
    Vertex_t{ 1.0,  1.0,  1.0, c,  d, d},
    Vertex_t{ 1.0,  1.0, -1.0, c,  0, d},
	]

	mut vert_buffer_desc := C.sg_buffer_desc{}
	unsafe {C.memset(&vert_buffer_desc, 0, sizeof(vert_buffer_desc))}
	vert_buffer_desc.size    = vertices.len * int(sizeof(Vertex_t))
	vert_buffer_desc.content = byteptr(vertices.data)
	vert_buffer_desc.@type   = .vertexbuffer
	vert_buffer_desc.label   = "cube-vertices".str
	vbuf := gfx.make_buffer(&vert_buffer_desc)
	
	/* create an instance buffer for the cube */
	mut inst_buffer_desc := C.sg_buffer_desc{}
	unsafe {C.memset(&inst_buffer_desc, 0, sizeof(inst_buffer_desc))}
	inst_buffer_desc.size    = num_inst * int(sizeof(m4.Vec4))
	inst_buffer_desc.@type   = .vertexbuffer
	inst_buffer_desc.usage   = .stream
	inst_buffer_desc.label   = "instance-data".str
	inst_buf := gfx.make_buffer(&inst_buffer_desc)
	
	
	/* create an index buffer for the cube */
	indices := [
		u16(0), 1, 2,  0, 2, 3,
		6, 5, 4,       7, 6, 4,
		8, 9, 10,      8, 10, 11,
		14, 13, 12,    15, 14, 12,
		16, 17, 18,    16, 18, 19,
		22, 21, 20,    23, 22, 20
	]
	
	mut index_buffer_desc := C.sg_buffer_desc{}
	unsafe {C.memset(&index_buffer_desc, 0, sizeof(index_buffer_desc))}
	index_buffer_desc.size    = indices.len * int(sizeof(u16))
	index_buffer_desc.content = byteptr(indices.data)
	index_buffer_desc.@type   = .indexbuffer
	index_buffer_desc.label   = "cube-indices".str
	ibuf := gfx.make_buffer(&index_buffer_desc)
		
	/* create shader */
	shader := gfx.make_shader(C.instancing_shader_desc())

	mut pipdesc := C.sg_pipeline_desc{}
	unsafe {C.memset(&pipdesc, 0, sizeof(pipdesc))}
	pipdesc.layout.buffers[0].stride = int(sizeof(Vertex_t))
	
	// the constants [C.ATTR_vs_m_pos, C.ATTR_vs_m_color0, C.ATTR_vs_m_texcoord0] are generated by sokol-shdc
	pipdesc.layout.attrs[C.ATTR_vs_i_pos      ].format       = .float3   // x,y,z as f32
	pipdesc.layout.attrs[C.ATTR_vs_i_pos      ].buffer_index = 0
	pipdesc.layout.attrs[C.ATTR_vs_i_color0   ].format       = .ubyte4n  // color as u32
	pipdesc.layout.attrs[C.ATTR_vs_i_pos      ].buffer_index = 0
	pipdesc.layout.attrs[C.ATTR_vs_i_texcoord0].format       = .float2   // u,v as f32
	pipdesc.layout.attrs[C.ATTR_vs_i_pos      ].buffer_index = 0
	
	// instancing
	// the constant ATTR_vs_i_inst_pos is generated by sokol-shdc
	pipdesc.layout.buffers[1].stride    = int(sizeof(m4.Vec4))
	pipdesc.layout.buffers[1].step_func = .per_instance  // we will pass a single parameter for each instance!!
	pipdesc.layout.attrs[C.ATTR_vs_i_inst_pos ].format        = .float4
	pipdesc.layout.attrs[C.ATTR_vs_i_inst_pos ].buffer_index  = 1
 
	pipdesc.shader = shader
	pipdesc.index_type = .uint16
	
	pipdesc.depth_stencil  = C.sg_depth_stencil_state{
		depth_write_enabled: true
		depth_compare_func : gfx.CompareFunc(C.SG_COMPAREFUNC_LESS_EQUAL)
	}
	pipdesc.rasterizer  = C.sg_rasterizer_state {
		cull_mode: .back
	}
	pipdesc.label = "glsl_shader pipeline".str
	
	mut bind := C.sg_bindings{}
	unsafe {C.memset(&bind, 0, sizeof(bind))}
	bind.vertex_buffers[0] = vbuf      // vertex buffer
	bind.vertex_buffers[1] = inst_buf  // instance buffer
	bind.index_buffer      = ibuf
	bind.fs_images[C.SLOT_tex] = app.texture
	app.bind['inst'] = bind
	app.pipe['inst'] = gfx.make_pipeline(&pipdesc)
	
	println("GLSL March init DONE!")
}

fn calc_tr_matrices(w f32, h f32, rx f32, ry f32, in_scale f32) m4.Mat4{
	proj := m4.perspective(60, w/h, 0.01, 4000.0)
	view := m4.look_at(m4.Vec4{e:[f32(0.0),100,6,0]!}, m4.Vec4{e:[f32(0),0,0,0]!}, m4.Vec4{e:[f32(0),1.0,0,0]!})
	view_proj := view * proj 
	
	rxm := m4.rotate(m4.rad(rx), m4.Vec4{e:[f32(1),0,0,0]!})
	rym := m4.rotate(m4.rad(ry), m4.Vec4{e:[f32(0),1,0,0]!})
	
	model :=  rym * rxm
	scale_m := m4.scale(m4.Vec4{e:[in_scale, in_scale, in_scale, 1]!})
	
	res :=  (scale_m * model)* view_proj
	return res
}

// triangles draw
fn draw_cube_glsl_i(mut app App){
	if app.init_flag == false {
		return
	}

	ws := gg.window_size_real_pixels()
	//ratio := f32(ws.width) / ws.height
	dw := f32(ws.width  / 2)
	dh := f32(ws.height / 2)
	
	rot := [f32(app.mouse_y), f32(app.mouse_x)]
	tr_matrix := calc_tr_matrices(dw, dh, rot[0], rot[1], 2.3)
	
	gfx.apply_pipeline(app.pipe['inst'])
	gfx.apply_bindings(app.bind['inst'])
	
	//***************
	// Instancing
	//***************
	// passing the instancing to the vs
	time_ticks := f32(time.ticks() - app.ticks) / 1000
	cube_size := 2
	sz := 128 // field size dimension
	cx := 64  // x center for the cubes
	cz := 64  // z center for the cubes
	//frame := (app.frame_count/4) % 100
	for index in 0..num_inst {
		x := f32(index % sz)
		z := f32(index / sz)
		// simply waves
		y := f32(math.cos((x+time_ticks)/2.0)*math.sin(z/2.0))*2
		// sombrero function
		//r := ((x-cx)*(x-cx)+(z-cz)*(z-cz))/(sz/2)
		//y := f32(math.sin(r+time_ticks)*4.0)
		spare_param := f32(index % 10)
		app.inst_pos[index] = m4.Vec4{e:[f32((x - cx - app.camera_x) * cube_size),y ,f32( (z - cz - app.camera_z) * cube_size),spare_param]!}
	}
	gfx.update_buffer(app.bind['inst'].vertex_buffers[1], &app.inst_pos , num_inst * int(sizeof(m4.Vec4)) ) 
	
	// Uniforms
	// *** vertex shadeer uniforms ***
	// passing the view matrix as uniform
	// res is a 4x4 matrix of f32 thus: 4*16 byte of size
	gfx.apply_uniforms(C.SG_SHADERSTAGE_VS, C.SLOT_vs_params_i, &tr_matrix, 4*16 )

/*	
	// *** fragment shader uniforms ***
	time_ticks := f32(time.ticks() - app.ticks) / 1000
	mut tmp_fs_params := [
		f32(ws.width), ws.height * ratio,  // x,y resolution to pass to FS
		0,0,                       // dont send mouse position
		//app.mouse_x,               // mouse x
		//ws.height - app.mouse_y*2, // mouse y scaled
		time_ticks,                // time as f32
		app.frame_count,           // frame count
		0,0                        // padding bytes , see "fs_params" struct paddings in rt_glsl.h 
	]!
	gfx.apply_uniforms(C.SG_SHADERSTAGE_FS, C.SLOT_fs_params_i, &tmp_fs_params, int(sizeof(tmp_fs_params)))
*/	
	// 3 vertices for triangle * 2 triangles per face * 6 faces = 36 vertices to draw for num_inst times
	gfx.draw(0, (3 * 2) * 6, num_inst)
}


fn draw_start_glsl(app App){
	if app.init_flag == false {
		return
	}

	ws := gg.window_size_real_pixels()
	//ratio := f32(ws.width) / ws.height
	//dw := f32(ws.width  / 2)
	//dh := f32(ws.height / 2)

	gfx.apply_viewport(0, 0, ws.width, ws.height, true)
}

fn draw_end_glsl(app App){
	gfx.end_pass()
	gfx.commit()
}

fn frame(mut app App) {
	ws := gg.window_size_real_pixels()

	// clear
	mut color_action := C.sg_color_attachment_action{
		action: gfx.Action(C.SG_ACTION_CLEAR)
	}
	color_action.val[0] = 0
	color_action.val[1] = 0
	color_action.val[2] = 0
	color_action.val[3] = 1.0
	mut pass_action := C.sg_pass_action{}
	pass_action.colors[0] = color_action
	gfx.begin_default_pass(&pass_action, ws.width, ws.height)

	draw_start_glsl(app)
		draw_cube_glsl_i(mut app)
	draw_end_glsl(app)
	app.frame_count++
}	

/******************************************************************************
* Init / Cleanup
******************************************************************************/
fn my_init(mut app App) {
	// create chessboard texture 256*256 RGBA
	w := 256
	h := 256
	sz := w * h * 4
	tmp_txt := unsafe { malloc(sz) }
	mut i := 0
	for i < sz {
		unsafe {
			y := (i >> 0x8) >> 5 // 8 cell
			x := (i & 0xFF) >> 5 // 8 cell
			// upper left corner
			if x == 0 && y == 0 {
				tmp_txt[i + 0] = byte(0xFF)
				tmp_txt[i + 1] = byte(0)
				tmp_txt[i + 2] = byte(0)
				tmp_txt[i + 3] = byte(0xFF)
			}
			// low right corner
			else if x == 7 && y == 7 {
				tmp_txt[i + 0] = byte(0)
				tmp_txt[i + 1] = byte(0xFF)
				tmp_txt[i + 2] = byte(0)
				tmp_txt[i + 3] = byte(0xFF)
			} else {
				col := if ((x + y) & 1) == 1 { 0xFF } else { 128 }
				tmp_txt[i + 0] = byte(col)  // red
				tmp_txt[i + 1] = byte(col)  // green
				tmp_txt[i + 2] = byte(col)  // blue
				tmp_txt[i + 3] = byte(0xFF) // alpha
			}
			i += 4
		}
	}
	unsafe {
		app.texture = create_texture(w, h, tmp_txt)
		free(tmp_txt)
	}
	
	// glsl
	init_cube_glsl_i(mut app)
	app.init_flag = true
}

fn cleanup(mut app App) {
	gfx.shutdown()
}

/******************************************************************************
* events handling
******************************************************************************/
fn my_event_manager(mut ev gg.Event, mut app App) {
	if ev.typ == .mouse_down{
		app.mouse_down = true
	}
	if ev.typ == .mouse_up{
		app.mouse_down = false
	}
	if app.mouse_down == true && ev.typ == .mouse_move {
		app.mouse_x = int(ev.mouse_x)
		app.mouse_y = int(ev.mouse_y)
	}
	if ev.typ == .touches_began || ev.typ == .touches_moved {
		if ev.num_touches > 0 {
			touch_point := ev.touches[0]
			app.mouse_x = int(touch_point.pos_x)
			app.mouse_y = int(touch_point.pos_y)
		}
	}
	
	// keyboard
	if ev.typ == .key_down {
		step := f32(1.0)
		match ev.key_code {
			.w { app.camera_z += step }
			.s { app.camera_z -= step }
			.a { app.camera_x -= step }
			.d { app.camera_x += step }
			else{}
		}
	}
}

/******************************************************************************
* Main
******************************************************************************/
[console] // is needed for easier diagnostics on windows
fn main(){
	// App init
	mut app := &App{
		gg: 0
	}

	app.gg = gg.new_context({
		width:         win_width
		height:        win_height
		use_ortho:     true // This is needed for 2D drawing
		create_window: true
		window_title:  'Instancing Cube'
		user_data:     app
		bg_color:      bg_color
		frame_fn:      frame
		init_fn:       my_init
		cleanup_fn:    cleanup
		event_fn:      my_event_manager
	})

	app.ticks = time.ticks() 
	app.gg.run()
}