// Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module main import rand struct Var { mut: typ string name string is_arg bool is_const bool is_import_const bool // TODO remove import consts entirely args []Var // function args attr string // [json] etc is_mut bool ptr bool ref bool parent_fn string // Variables can only be defined in functions pkg string // module where this var is stored TODO rename to `mod` line_nr int access_mod AccessMod is_global bool // __global (translated from C only) is_used bool scope_level int } struct Parser { file_path string // "/home/user/hello.v" file_name string // "hello.v" mut: scanner *Scanner // tokens []Token // TODO cache all tokens, right now they have to be scanned twice token_idx int tok Token prev_tok Token prev_tok2 Token // TODO remove these once the tokens are cached lit string cgen *CGen table *Table run Pass // TODO rename `run` to `pass` os Os pkg string inside_const bool expr_var Var assigned_type string tmp_cnt int // TODO all these options are copy-pasted from the V struct. Create a Settings struct instead? is_test bool is_script bool is_live bool is_so bool is_prof bool translated bool is_prod bool is_verbose bool obfuscate bool is_play bool is_repl bool builtin_pkg bool build_mode BuildMode vh_lines []string inside_if_expr bool is_struct_init bool if_expr_cnt int for_expr_cnt int // to detect whether `continue` can be used ptr_cast bool calling_c bool cur_fn *Fn returns bool } const ( EmptyFn = &Fn { } ) fn (c mut V) new_parser(path string, run Pass) Parser { c.log('new_parser("$path")') c.cgen.run = run mut p := Parser { file_path: path file_name: path.all_after('/') scanner: new_scanner(path) table: c.table cur_fn: EmptyFn cgen: c.cgen is_test: c.is_test is_script: (c.is_script && path == c.dir) is_so: c.is_so os: c.os is_prof: c.is_prof is_prod: c.is_prod is_play: c.is_play translated: c.translated obfuscate: c.obfuscate is_verbose: c.is_verbose build_mode: c.build_mode is_repl: c.is_repl run: run } p.next() // p.scanner.debug_tokens() return p } fn (p mut Parser) next() { p.prev_tok2 = p.prev_tok p.prev_tok = p.tok res := p.scanner.scan() p.tok = res.tok p.lit = res.lit } fn (p &Parser) log(s string) { if !p.is_verbose { return } println(s) } fn (p mut Parser) parse() { p.log('\nparse() run=$p.run file=$p.file_name tok=${p.strtok()}')// , "script_file=", script_file) // `module main` is not required if it's a single file program if p.is_script || p.is_test { p.pkg = 'main' // User may still specify `module main` if p.tok == PACKAGE { p.next() p.fgen('module ') p.pkg = p.check_name() } } else { p.check(PACKAGE) p.pkg = p.check_name() } p.fgenln('\n') p.builtin_pkg = p.pkg == 'builtin' // Import pass - the first and the smallest pass that only analyzes imports p.table.register_package(p.pkg) if p.run == RUN_IMPORTS { for p.tok == IMPORT && p.peek() != CONST { p.import_statement() } return } // Go through every top level token or throw a compilation error if a non-top level token is met for { switch p.tok { case IMPORT: if p.peek() == CONST { p.const_decl() } else { // TODO remove imported consts from the language p.import_statement() } case AT: p.at() case ENUM: p.next() if p.tok == NAME { p.fgen('enum ') name := p.check_name() p.fgen(' ') p.enum_decl(name) } // enum without a name, only allowed in code, translated from C // it's a very bad practice in C as well, but is used unfortunately (for example, by DOOM) // such fields are basically int consts else if p.translated { p.enum_decl('int') } else { p.check(NAME) } case PUB: if p.peek() == FUNC { p.fn_decl() } // TODO public structs case FUNC: p.fn_decl() case TIP: p.type_decl() case STRUCT, INTERFACE, UNION, LSBR:// `[` can only mean an [attribute] before the struct definition p.struct_decl() case CONST: p.const_decl() case HASH: // insert C code, TODO this is going to be removed ASAP // some libraries (like UI) still have lots of C code // # puts("hello"); p.chash() case DOLLAR: // $if, $else p.comp_time() case GLOBAL: if !p.translated { p.error('__global is only allowed in translated code') } p.next() name := p.check_name() typ := p.get_type() p.register_global(name, typ) // p.genln(p.table.cgen_name_type_pair(name, typ)) mut g := p.table.cgen_name_type_pair(name, typ) if p.tok == ASSIGN { p.next() // p.gen(' = ') g += ' = ' p.cgen.start_tmp() p.bool_expression() // g += '<<< ' + p.cgen.end_tmp() + '>>>' g += p.cgen.end_tmp() } // p.genln('; // global') g += ('; // global') p.cgen.consts << g case EOF: p.log('end of parse()') if true && !p.first_run() && p.fileis('test') { out := os.create('/var/tmp/fmt.v') out.appendln(p.scanner.fmt_out.str()) out.close() } return default: // no `fn main`, add this "global" statement to cgen.fn_main if p.is_script && !p.is_test { if p.cur_fn.scope_level == 0 { // p.cur_fn.scope_level++ } // println('is script') p.print_tok() start := p.cgen.lines.len p.statement(true) end := p.cgen.lines.len lines := p.cgen.lines.slice(start, end) // p.cgen.fn_main << p.cgen.prev_line // println('fn line:') // println(p.cgen.fn_main + lines.join('\n')) p.cgen.fn_main = p.cgen.fn_main + lines.join('\n') p.cgen.cur_line = '' for i := start; i < end; i++ { // p.cgen.lines[p.cgen.lines.len - 1] = '' p.cgen.lines[i] = '' } // exit('') } else { p.error('unexpected token `${p.strtok()}`') } } } } fn (p mut Parser) import_statement() { p.check(IMPORT) // `import ()` if p.tok == LPAR { p.check(LPAR) for p.tok != RPAR && p.tok != EOF { pkg := p.lit.trim_space() p.next() if p.table.imports.contains(pkg) { continue } p.table.imports << pkg p.table.register_package(pkg) } p.check(RPAR) return } // `import foo` if p.tok != NAME { p.error('bad import format') } pkg := p.lit.trim_space() p.next() p.fgenln(' ' + pkg) // Make sure there are no duplicate imports if p.table.imports.contains(pkg) { return } p.log('adding import $pkg') p.table.imports << pkg p.table.register_package(pkg) } fn (p mut Parser) const_decl() { is_import := p.tok == IMPORT p.inside_const = true if is_import { p.next() } p.check(CONST) p.fspace() p.check(LPAR) p.fgenln('') p.scanner.fmt_indent++ for p.tok == NAME { // `Age = 20` mut name := p.check_name() if p.is_play && ! (name[0] >= `A` && name[0] <= `Z`) { p.error('const name must be capitalized') } // Imported consts (like GL_TRIANGLES) dont need pkg prepended (gl__GL_TRIANGLES) if !is_import { name = p.prepend_pkg(name) } mut typ := 'int' if !is_import { p.check_space(ASSIGN) typ = p.expression() } if p.first_run() && !is_import && p.table.known_const(name) { p.error('redefinition of `$name`') } p.table.register_const(name, typ, p.pkg, is_import) if p.run == RUN_MAIN && !is_import { // TODO hack // cur_line has const's value right now. if it's just a number, then optimize generation: // output a #define so that we don't pollute the binary with unnecessary global vars if is_compile_time_const(p.cgen.cur_line) { p.cgen.consts << '#define $name $p.cgen.cur_line' p.cgen.cur_line = '' p.fgenln('') continue } if typ.starts_with('[') { p.cgen.consts << p.table.cgen_name_type_pair(name, typ) + ' = $p.cgen.cur_line;' } else { p.cgen.consts << p.table.cgen_name_type_pair(name, typ) + ';' p.cgen.consts_init << '$name = $p.cgen.cur_line;' } p.cgen.cur_line = '' } p.fgenln('') } p.scanner.fmt_indent-- p.check(RPAR) p.fgenln('\n') p.inside_const = false } // `type myint int` // `type onclickfn fn(voidptr) int` fn (p mut Parser) type_decl() { p.check(TIP) name := p.check_name() parent := p.get_type() nt_pair := p.table.cgen_name_type_pair(name, parent) // TODO dirty C typedef hacks for DOOM // Unknown type probably means it's a struct, and it's used before the struct is defined, // so specify "struct" _struct := if !parent.contains('[') && !parent.starts_with('fn ') && !p.table.known_type(parent){'struct'} else { ''} p.gen_typedef('typedef $_struct $nt_pair; // type alias name="$name" parent="$parent"') p.table.register_type_with_parent(name, parent) } // also unions and interfaces fn (p mut Parser) struct_decl() { // Attribute before type? mut objc_parent := '' mut is_objc := false// V can generate Objective C for integration with Cocoa // [attr] if p.tok == LSBR { p.check(LSBR) // `[interface:ParentInterface]` is_objc = p.tok == INTERFACE p.next() if is_objc { p.check(COLON) objc_parent = p.check_name() } p.check(RSBR) } is_interface := p.tok == INTERFACE is_union := p.tok == UNION is_struct := p.tok == STRUCT p.fgen(p.tok.str() + ' ') // Get type name p.next() mut name := p.check_name() if name.contains('_') && !p.translated { p.error('type names cannot contain `_`') } if is_interface && !name.ends_with('er') { p.error('interface names temporarily have to end with `er` (e.g. `Speaker`, `Reader`)') } is_c := name == 'C' && p.tok == DOT if is_c { p.check(DOT) name = p.check_name() } // Specify full type name if !is_c && !p.builtin_pkg && p.pkg != 'main' { name = p.prepend_pkg(name) } if p.run == RUN_DECLS && p.table.known_type(name) { p.error('`$name` redeclared') } // Generate type definitions if is_objc { p.gen_type('@interface $name : $objc_parent { @public') } else { // type alias is generated later if !is_c { kind := if is_union{'union'} else { 'struct'} p.gen_typedef('typedef $kind $name $name;') p.gen_type('$kind $name {') } } // V used to have 'type Foo struct', many Go users might use this syntax if p.tok == STRUCT { p.error('use `struct $name {` instead of `type $name struct {`') } // Register the type mut typ := p.table.find_type(name) mut is_ph := false if typ.is_placeholder { is_ph = true typ.name = name typ.pkg = p.pkg typ.is_c = is_c typ.is_placeholder = false } else { typ = &Type { name: name pkg: p.pkg is_c: is_c is_interface: is_interface } } // Struct `C.Foo` declaration, no body // println('EEEE $is_c $is_struct') if is_c && is_struct && p.tok != LCBR { // println('skipping struct header $name') p.table.register_type2(typ) return } p.fgen(' ') p.check(LCBR) // Struct fields mut is_pub := false mut is_mut := false mut names := []string// to avoid dup names TODO alloc perf // mut is_mut_mut := false for p.tok != RCBR { if p.tok == PUB { if is_pub { p.error('structs can only have one `pub:`, all public fields have to be grouped') } is_pub = true is_mut = false p.scanner.fmt_indent-- p.check(PUB) p.check(COLON) p.scanner.fmt_indent++ p.fgenln('') } if p.tok == MUT { if is_mut { p.error('structs can only have one `mut:`, all private mutable fields have to be grouped') } is_mut = true is_pub = false p.scanner.fmt_indent-- p.check(MUT) p.check(COLON) p.scanner.fmt_indent++ p.fgenln('') } // if is_pub { // } // (mut) user *User // if p.tok == PLUS { // p.next() // } // Check dups field_name := p.check_name() if field_name in names { p.error('duplicate field `$field_name`') } names << field_name // We are in an interface? // `run() string` => run is a method, not a struct field if is_interface { mut interface_method := &Fn { name: field_name is_interface: true is_method: true receiver_typ: name } println('is interfaace. field=$field_name run=$p.run') p.fn_args(mut interface_method) p.fspace() interface_method.typ = p.get_type()// method return type typ.add_method(interface_method) p.fgenln('') continue } // `pub` access mod access_mod := if is_pub{PUBLIC} else { PRIVATE} if typ.name == 'Userf' { println('$field_name $access_mod mut=$is_mut') } p.fgen(' ') field_type := p.get_type() is_atomic := p.tok == ATOMIC if is_atomic { p.next() p.gen_type('_Atomic ') } if !is_c { p.gen_type(p.table.cgen_name_type_pair(field_name, field_type) + ';') } // [ATTR] mut attr := '' if p.tok == LSBR { p.next() attr = p.check_name() p.check(RSBR) } typ.add_field(field_name, field_type, is_mut, attr, access_mod) p.fgenln('') } if !is_ph && p.first_run() { p.table.register_type2(typ) } p.check(RCBR) if !is_c { p.gen_type('}; ') } if is_objc { p.gen_type('@end') } p.fgenln('\n') } fn (p mut Parser) enum_decl(_enum_name string) { mut enum_name := _enum_name // Specify full type name if !p.builtin_pkg && p.pkg != 'main' { enum_name = p.prepend_pkg(enum_name) } p.table.register_type2(&Type { name: enum_name pkg: p.pkg parent: 'int' is_enum: true }) // Skip empty enums if enum_name != 'int' { p.cgen.typedefs << 'typedef int $enum_name ;\n' } p.check(LCBR) mut val := 0 for p.tok == NAME { field := p.check_name() // name := '${p.pkg}__${enum_name}_$field' // name := '${enum_name}_$field' name := '$field' p.fgenln('') if p.run == RUN_MAIN { p.cgen.consts << '#define $name $val \n' } if p.tok == COMMA { p.next() } p.table.register_const(name, enum_name, p.pkg, false) val++ } p.check(RCBR) p.fgenln('\n') } // check_name checks for a name token and returns its literal fn (p mut Parser) check_name() string { name := p.lit p.check(NAME) return name } fn (p mut Parser) check_string() string { s := p.lit p.check(STRING) return s } fn (p &Parser) strtok() string { if p.tok == NAME { return p.lit } if p.tok == STRING { return '"$p.lit"' } res := p.tok.str() if res == '' { n := int(p.tok) return n.str() } return res } // same as check(), but addes a space to the formatter output // TODO bad name fn (p mut Parser) check_space(expected Token) { p.fspace() p.check(expected) p.fspace() } fn (p mut Parser) check(expected Token) { if p.tok != expected { println('check()') mut s := 'expected `${expected.str()}` but got `${p.strtok()}`' p.next() println('next token = `${p.strtok()}`') print_backtrace() p.error(s) } if expected == RCBR { p.scanner.fmt_indent-- } p.fgen(p.strtok()) // vfmt: increase indentation on `{` unless it's `{}` if expected == LCBR && p.scanner.text[p.scanner.pos + 1] != `}` { p.fgenln('') p.scanner.fmt_indent++ } p.next() } fn (p mut Parser) error(s string) { // Dump all vars and types for debugging if false { file_types := os.create_file('$TmpPath/types') file_vars := os.create_file('$TmpPath/vars') // ////debug("ALL T", q.J(p.table.types)) // os.write_to_file('/var/tmp/lang.types', '')//pes(p.table.types)) // //debug("ALL V", q.J(p.table.vars)) // os.write_to_file('/var/tmp/lang.vars', q.J(p.table.vars)) file_types.close() file_vars.close() } if !p.is_repl { println('pass=$p.run fn=`$p.cur_fn.name`') } p.cgen.save() // p.scanner.debug_tokens() // Print `[]int` instead of `array_int` in errors p.scanner.error(s.replace('array_', '[]').replace('__', '.')) } fn (p &Parser) first_run() bool { return p.run == RUN_DECLS } // TODO return Type instead of string? fn (p mut Parser) get_type() string { debug := p.fileis('fn_test') && false mut mul := false mut nr_muls := 0 mut typ = '' // fn type if p.tok == FUNC { if debug { println('\nget_type() GOT FN TYP line=$p.scanner.line_nr') } mut f := Fn{name: '_', pkg: p.pkg} p.next() line_nr := p.scanner.line_nr p.fn_args(mut f) // Same line, it's a return type if p.scanner.line_nr == line_nr { if debug { println('same line getting type') } f.typ = p.get_type() // println('fn return typ=$f.typ') } else { f.typ = 'void' } // Register anon fn type fn_typ := Type { name: f.typ_str()// 'fn (int, int) string' pkg: p.pkg func: f } p.table.register_type2(fn_typ) return f.typ_str() } // arrays ([]int) mut is_arr := false mut is_arr2 := false// [][]int TODO remove this and allow unlimited levels of arrays is_question := p.tok == QUESTION if is_question { p.check(QUESTION) } if p.tok == LSBR { p.check(LSBR) // [10]int if p.tok == INT { typ = '[$p.lit]' p.next() } else { is_arr = true } p.check(RSBR) // [10][3]int if p.tok == LSBR { p.next() if p.tok == INT { typ += '[$p.lit]' p.check(INT) } else { is_arr2 = true } p.check(RSBR) } } for p.tok == MUL { mul = true nr_muls++ p.next() } if p.tok == AMP { mul = true nr_muls++ p.next() } typ += p.lit if !p.is_struct_init { // Otherwise we get `foo := FooFoo{` because `Foo` was already generated in name_expr() p.fgen(p.lit) } // C.Struct import if p.lit == 'C' && p.peek() == DOT { p.next() p.check(DOT) typ = p.lit } else { // Package specified? (e.g. gx.Image) if p.peek() == DOT { p.next() p.check(DOT) typ += '__$p.lit' } mut t := p.table.find_type(typ) // "typ" not found? try "pkg__typ" if t.name == '' && !p.builtin_pkg { // && !p.first_run() { if !typ.contains('array_') && p.pkg != 'main' && !typ.contains('__') { typ = p.prepend_pkg(typ) } t = p.table.find_type(typ) if t.name == '' && !p.translated && !p.first_run() && !typ.starts_with('[') { println('get_type() bad type') // println('all registered types:') // for q in p.table.types { // println(q.name) // } p.error('unknown type `$typ`') } } } if typ == 'void' { p.error('unknown type `$typ`') } if mul { typ += repeat_char(`*`, nr_muls) } // Register an []array type if is_arr2 { typ = 'array_array_$typ' p.register_array(typ) } else if is_arr { typ = 'array_$typ' // p.log('ARR TYPE="$typ" run=$p.run') // We come across "[]User" etc ? p.register_array(typ) } p.next() if p.tok == QUESTION || is_question { typ = 'Option_$typ' p.table.register_type_with_parent(typ, 'Option') if p.tok == QUESTION { p.next() } } // Because the code uses * to see if it's a pointer if typ == 'byteptr' { return 'byte*' } if typ == 'voidptr' { //if !p.builtin_pkg && p.pkg != 'os' && p.pkg != 'gx' && p.pkg != 'gg' && !p.translated { //p.error('voidptr can only be used in unsafe code') //} return 'void*' } if typ.last_index('__') > typ.index('__') { p.error('2 __ in gettype(): typ="$typ"') } return typ } fn (p &Parser) print_tok() { if p.tok == NAME { println(p.lit) return } if p.tok == STRING { println('"$p.lit"') return } println(p.tok.str()) } // statements() returns the type of the last statement fn (p mut Parser) statements() string { p.log('statements()') typ := p.statements_no_curly_end() if !p.inside_if_expr { p.genln('}') } if p.fileis('if_expr') { println('statements() ret=$typ line=$p.scanner.line_nr') } return typ } fn (p mut Parser) statements_no_curly_end() string { p.cur_fn.open_scope() if !p.inside_if_expr { p.genln('') } mut i := 0 mut last_st_typ := '' for p.tok != RCBR && p.tok != EOF && p.tok != CASE && p.tok != DEFAULT { // println(p.tok.str()) // p.print_tok() last_st_typ = p.statement(true) // println('last st typ=$last_st_typ') if !p.inside_if_expr { p.genln('')// // end st tok= ${p.strtok()}') p.fgenln('') } i++ if i > 50000 { p.cgen.save() p.error('more than 50 000 statements in function `$p.cur_fn.name`') } } if p.tok != CASE && p.tok != DEFAULT { // p.next() p.check(RCBR) } else { // p.check(RCBR) } p.scanner.fmt_indent-- // println('close scope line=$p.scanner.line_nr') p.cur_fn.close_scope() return last_st_typ } fn (p mut Parser) genln(s string) { p.cgen.genln(s) } fn (p mut Parser) gen(s string) { p.cgen.gen(s) } // Generate V header from V source fn (p mut Parser) vh_genln(s string) { p.vh_lines << s } fn (p mut Parser) fmt_inc() { p.scanner.fmt_indent++ } fn (p mut Parser) fmt_dec() { p.scanner.fmt_indent-- } fn (p mut Parser) statement(add_semi bool) string { p.cgen.is_tmp = false tok := p.tok mut q := '' switch tok { case NAME: next := p.peek() if p.is_verbose { println(next.str()) } // goto_label: if p.peek() == COLON { p.fmt_dec() label := p.check_name() p.fmt_inc() p.genln(label + ':') p.check(COLON) return '' } else if p.peek() == DECL_ASSIGN { p.log('var decl') p.var_decl() } else if p.lit == 'jsdecode' { p.js_decode() } else { // "a + 3", "a(7)" or maybe just "a" q = p.bool_expression() } case GOTO: p.check(GOTO) p.fgen(' ') label := p.check_name() p.genln('goto $label;') return '' case HASH: p.chash() return '' case DOLLAR: p.comp_time() case IF: p.if_st(false) case FOR: p.for_st() case SWITCH, MATCH: p.switch_statement() case MUT, STATIC: p.var_decl() case RETURN: p.return_st() case LCBR:// {} block p.next() p.genln('{') p.statements() return '' case CONTINUE: if p.for_expr_cnt == 0 { p.error('`continue` statement outside `for`') } p.genln('continue') p.next() case BREAK: if p.for_expr_cnt == 0 { p.error('`break` statement outside `for`') } p.genln('break') p.next() case GO: p.go_statement() case ASSERT: p.assert_statement() default: // An expression as a statement typ := p.expression() if p.inside_if_expr { } else { p.genln('; ') } return typ } // ? : uses , as statement separators if p.inside_if_expr && p.tok != RCBR { p.gen(', ') } if add_semi && !p.inside_if_expr { p.genln(';') } return q // p.cgen.end_statement() } // is_map: are we in map assignment? (m[key] = val) if yes, dont generate '=' // this can be `user = ...` or `user.field = ...`, in both cases `v` is `user` fn (p mut Parser) assign_statement(v Var, ph int, is_map bool) { p.log('assign_statement() name=$v.name tok=') // p.print_tok() // p.gen(name) // p.assigned_var = name tok := p.tok if !v.is_mut && !v.is_arg && !p.translated { p.error('`$v.name` is immutable') } if !v.is_mut && p.is_play && !p.builtin_pkg && !p.translated { // no mutable args in play p.error('`$v.name` is immutable') } is_str := v.typ == 'string' switch tok { case ASSIGN: if !is_map { p.gen(' = ') } case PLUS_ASSIGN: if is_str { p.gen('= string_add($v.name, ')// TODO can't do `foo.bar += '!'` } else { p.gen(' += ') } default: p.gen(' ' + p.tok.str() + ' ') } p.fgen(' ' + p.tok.str() + ' ') p.next() pos := p.cgen.cur_line.len expr_type := p.bool_expression() // Allow `num = 4` where `num` is an `?int` if p.assigned_type.starts_with('Option_') && expr_type == p.assigned_type.right('Option_'.len) { println('allowing option asss') expr := p.cgen.cur_line.right(pos) left := p.cgen.cur_line.left(pos) p.cgen.cur_line = left + 'opt_ok($expr)' } else if !p.builtin_pkg && !p.check_types_no_throw(expr_type, p.assigned_type) { p.scanner.line_nr-- p.error('cannot use type `$expr_type` as type `$p.assigned_type` in assignment') } if is_str && tok == PLUS_ASSIGN { p.gen(')') } // p.assigned_var = '' p.assigned_type = '' if !v.is_used { p.cur_fn.mark_var_used(v) } } fn (p mut Parser) var_decl() { is_mut := p.tok == MUT || p.prev_tok == FOR is_static := p.tok == STATIC if p.tok == MUT { p.check(MUT) p.fspace() } if p.tok == STATIC { p.check(STATIC) p.fspace() } // println('var decl tok=${p.strtok()} ismut=$is_mut') name := p.check_name() p.fgen(' := ') // Don't allow declaring a variable with the same name. Even in a child scope // (shadowing is not allowed) if !p.builtin_pkg && p.cur_fn.known_var(name) { v := p.cur_fn.find_var(name) p.error('redefinition of `$name`') // Check if this variable has already been declared only in the first run. // Otherwise the is_script code outside main will run in the first run // since we can't skip the function body since there's no function. // And the variable will be registered twice. if p.is_play && p.first_run() && !p.builtin_pkg { p.error('variable `$name` is already declared.') } } // println('var_decl $name') // p.assigned_var = name p.next()// := // Generate expression to tmp because we need its type first // [TYP NAME =] bool_expression() pos := p.cgen.add_placeholder() // p.gen('typ $name = ') // p.gen('/*^^^*/') mut typ := p.bool_expression() // p.gen('/*VVV*/') // Option check ? or { or_else := p.tok == OR_ELSE tmp := p.get_tmp() // assigned_var_copy := p.assigned_var if or_else { // Option_User tmp = get_user(1); // if (!tmp.ok) { or_statement } // User user = *(User*)tmp.data; // p.assigned_var = '' p.cgen.set_placeholder(pos, '$typ $tmp = ') p.gen(';') typ = typ.replace('Option_', '') p.next() p.check(LCBR) p.genln('if (!$tmp .ok) {') p.statements() p.genln('$typ $name = *($typ*) $tmp . data;') if !p.returns && p.prev_tok2 != CONTINUE && p.prev_tok2 != BREAK { println(p.prev_tok2) p.error('`or` statement must return/continue/break') } // p.assigned_var = assigned_var_copy } p.register_var(Var { name: name typ: typ is_mut: is_mut }) mut cgen_typ := typ if !or_else { gen_name := p.table.var_cgen_name(name) // p.cgen.set_placeholder(pos, '$cgen_typ $gen_name = ') mut nt_gen := p.table.cgen_name_type_pair(gen_name, cgen_typ) + '=' if is_static { nt_gen = 'static $nt_gen' // p.gen('static ') } p.cgen.set_placeholder(pos, nt_gen) } } fn (p mut Parser) bool_expression() string { tok := p.tok typ := p.bterm() for p.tok == AND || p.tok == OR { p.gen(' ${p.tok.str()} ') p.next() p.check_types(p.bterm(), typ) } if typ == '' { println('curline:') println(p.cgen.cur_line) println(tok.str()) p.error('expr() returns empty type') } return typ } fn (p mut Parser) bterm() string { ph := p.cgen.add_placeholder() mut typ = p.expression() is_str := typ.eq('string') tok := p.tok // if tok in [ EQ, GT, LT, LE, GE, NE] { if tok == EQ || tok == GT || tok == LT || tok == LE || tok == GE || tok == NE { p.fgen(' ${p.tok.str()} ') if is_str { p.gen(',') } else { p.gen(tok.str()) } p.next() p.check_types(p.expression(), typ) typ = 'bool' if is_str { p.gen(')') switch tok { case EQ: p.cgen.set_placeholder(ph, 'string_eq(') case NE: p.cgen.set_placeholder(ph, 'string_ne(') case LE: p.cgen.set_placeholder(ph, 'string_le(') case GE: p.cgen.set_placeholder(ph, 'string_ge(') case GT: p.cgen.set_placeholder(ph, 'string_gt(') case LT: p.cgen.set_placeholder(ph, 'string_lt(') } } } return typ } // also called on *, & fn (p mut Parser) name_expr() string { p.log('\nname expr() pass=$p.run tok=${p.tok.str()} $p.lit') // print('known type:') // println(p.table.known_type(p.lit)) // hack for struct_init TODO hack_pos := p.scanner.pos hack_tok := p.tok hack_lit := p.lit // amp ptr := p.tok == AMP deref := p.tok == MUL if ptr || deref { p.next() } if deref { if p.is_play && !p.builtin_pkg { p.error('dereferencing is temporarily disabled on the playground, will be fixed soon') } } mut name := p.lit p.fgen(name) // known_type := p.table.known_type(name) orig_name := name is_c := name == 'C' && p.peek() == DOT mut is_c_struct_init := is_c && ptr// a := &C.mycstruct{} if is_c { p.next() p.check(DOT) name = p.lit p.fgen(name) // Currently struct init is set to true only we have `&C.Foo{}`, handle `C.Foo{}`: if !is_c_struct_init && p.peek() == LCBR { is_c_struct_init = true } } // ////////////////////////// // module ? // Allow shadowing (gg = gg.newcontext(); gg.draw_triangle()) if p.table.known_pkg(name) && !p.cur_fn.known_var(name) { // println('"$name" is a known pkg') pkg := name p.next() p.check(DOT) name = p.lit p.fgen(name) name = prepend_pkg(pkg, name) } else if !p.table.known_type(name) && !p.cur_fn.known_var(name) && !p.table.known_fn(name) && !p.table.known_const(name) && !is_c { name = p.prepend_pkg(name) } // Variable v := p.cur_fn.find_var(name) if v.name.len != 0 { if ptr { p.gen('& /*vvar*/ ') } else if deref { p.gen('*') } mut typ := p.var_expr(v) // *var if deref { if !typ.contains('*') && !typ.ends_with('ptr') { println('name="$name", t=$v.typ') p.error('dereferencing requires a pointer, but got `$typ`') } typ = typ.replace('ptr', '')// TODO typ = typ.replace('*', '')// TODO } // &var else if ptr { typ += '*' } return typ } // if known_type || is_c_struct_init || (p.first_run() && p.peek() == LCBR) { // known type? int(4.5) or Color.green (enum) if p.table.known_type(name) { // float(5), byte(0), (*int)(ptr) etc if p.peek() == LPAR || (deref && p.peek() == RPAR) { // println('CASTT $name') if deref { // p.check(RPAR) // p.next() name += '*' } else if ptr { name += '*' } p.gen('(/*casttt*/') mut typ := p.cast(name) p.gen(')') for p.tok == DOT { typ = p.dot(typ, 0) } return typ } // Color.green else if p.peek() == DOT { enum_type := p.table.find_type(name) if !enum_type.is_enum { p.error('`$name` is not an enum') } p.next() p.check(DOT) val := p.lit // println('enum val $val') p.gen(p.pkg + '__' + enum_type.name + '_' + val)// `color = main__Color_green` p.next() return enum_type.name } else { // go back to name start (pkg.name) p.scanner.pos = hack_pos p.tok = hack_tok p.lit = hack_lit // TODO hack. If it's a C type, we may need to add struct before declaration: // a := &C.A{} ==> struct A* a = malloc(sizeof(struct A)); if is_c_struct_init && name != 'tm' { p.cgen.insert_before('struct ') } return p.struct_init(is_c_struct_init) } } // C fn if is_c { f := Fn { name: name// .replace('c_', '') is_c: true } p.fn_call(f, 0, '', '') // Try looking it up. Maybe its defined with "C.fn_name() fn_type", // then we know what type it returns cfn := p.table.find_fn(name) // Not Found? Return 'void*' if cfn.name == '' { return 'void*' } return cfn.typ } // Constant mut c := p.table.find_const(name) if c.name != '' && ptr && !c.is_global { p.error('cannot take the address of constant `$c.name`') } if c.name.len != 0 { if ptr { // c.ptr = true p.gen('& /*const*/ ') } p.log('calling var expr') mut typ := p.var_expr(c) if ptr { typ += '*' } return typ } // Function (not method btw, methods are handled in dot()) f := p.table.find_fn(name) if f.name == '' { println(p.cur_fn.name) println(p.cur_fn.args.len) // if !p.first_run() && !p.translated { if !p.first_run() { // println('name_expr():') // If orig_name is a pkg, then printing undefined: `pkg` tells us nothing if p.table.known_pkg(orig_name) { name = name.replace('__', '.') p.error('undefined: `$name`') } else { p.error('undefined: `$orig_name`') } } p.next() return 'void' } // no () after func, so func is an argument, just gen its name // TODO verify this and handle errors if p.peek() != LPAR { p.gen(p.table.cgen_name(f)) p.next() return 'void*' } // TODO bring back if f.typ == 'void' && !p.inside_if_expr { // p.error('`$f.name` used as value') } p.log('calling function') p.fn_call(f, 0, '', '') // dot after a function call: `get_user().age` if p.tok == DOT { mut typ := '' for p.tok == DOT { // println('dot #$dc') typ = p.dot(f.typ, 0) } return typ } p.log('end of name_expr') return f.typ } fn (p mut Parser) var_expr(v Var) string { p.log('\nvar_expr() v.name="$v.name" v.typ="$v.typ"') // println('var expr is_tmp=$p.cgen.is_tmp\n') // p.gen('VAR EXPR ') p.cur_fn.mark_var_used(v) fn_ph := p.cgen.add_placeholder() p.expr_var = v p.gen(p.table.var_cgen_name(v.name)) p.next() mut typ := v.typ // fn_pointer() if typ.starts_with('fn ') { println('CALLING FN PTR') p.print_tok() T := p.table.find_type(typ) p.gen('(') p.fn_call_args(T.func) p.gen(')') typ = T.func.typ } // users[0] before dot so that we can have // users[0].name if p.tok == LSBR { typ = p.index_expr(typ, fn_ph) // ////println('QQQQ KEK $typ') } // a.b.c().d chain // mut dc := 0 for p.tok == DOT { // println('dot #$dc') typ = p.dot(typ, fn_ph) p.log('typ after dot=$typ') // print('tok after dot()') // p.print_tok() // dc++ if p.tok == LSBR { // typ = p.index_expr(typ, fn_ph, v) } } // a++ and a-- if p.tok == INC || p.tok == DEC { if !v.is_mut && !v.is_arg && !p.translated { p.error('`$v.name` is immutable') } if typ != 'int' { if !p.translated && !is_number_type(typ) { // if T.parent != 'int' { p.error('cannot ++/-- value of type `$typ`') } } p.gen(p.tok.str()) p.fgen(p.tok.str()) p.next()// ++ // allow a := c++ in translated if p.translated { return p.index_expr(typ, fn_ph) // return typ } else { return 'void' } } typ = p.index_expr(typ, fn_ph) return typ } fn (p &Parser) fileis(s string) bool { return p.scanner.file_path.contains(s) } // user.name => `str_typ` is `User` // user.company.name => `str_typ` is `Company` fn (p mut Parser) dot(str_typ string, method_ph int) string { p.check(DOT) field_name := p.lit p.fgen(field_name) p.log('dot() field_name=$field_name typ=$str_typ') if p.fileis('hi_test') { println('dot() field_name=$field_name typ=$str_typ') } typ := p.find_type(str_typ) if typ.name.len == 0 { p.error('dot(): cannot find type `$str_typ`') } has_field := p.table.type_has_field(typ, field_name) has_method := p.table.type_has_method(typ, field_name) if !typ.is_c && !has_field && !has_method && !p.first_run() { // println(typ.str()) if typ.name.starts_with('Option_') { opt_type := typ.name.substr(7, typ.name.len) p.error('unhandled option type: $opt_type?') } println('dot():') println('fields:') for field in typ.fields { println(field.name) } println('methods:') for field in typ.methods { println(field.name) } println('str_typ=="$str_typ"') p.error('type `$typ.name` has no field or method `$field_name`') } mut dot := '.' if str_typ.contains('*') { dot = '->' } // field if has_field { field := p.table.find_field(typ, field_name) // Is the next token `=`, `+=` etc? (Are we modifying the field?) next := p.peek() modifying := next.is_assign() || next == INC || next == DEC is_vi := p.fileis('vi') if !p.builtin_pkg && !p.translated && modifying && !field.is_mut && !is_vi { p.error('cannot modify immutable field `$field_name` (type `$typ.name`)') } if !p.builtin_pkg && p.pkg != typ.pkg { } // if p.is_play && field.access_mod == PRIVATE && !p.builtin_pkg && p.pkg != typ.pkg { // Don't allow `arr.data` if field.access_mod == PRIVATE && !p.builtin_pkg && !p.translated && p.pkg != typ.pkg { // println('$typ.name :: $field.name ') // println(field.access_mod) p.error('cannot refer to unexported field `$field_name` (type `$typ.name`)') } // if field.access_mod == PUBLIC && p.peek() == ASSIGN && !p.builtin_pkg && p.pkg != typ.pkg { // Don't allow `str.len = 0` if field.access_mod == PUBLIC && !p.builtin_pkg && p.pkg != typ.pkg { // if field.name == 'age' { // println('HOHOH') // println(next.str()) // } if !field.is_mut && !p.translated && modifying { p.error('cannot modify public immutable field `$field_name` (type `$typ.name`)') } } p.gen('${dot}${field_name}') // p.gen(dot + field_name) p.next() return field.typ } // method // mut method := typ.find_method(field_name) mut method := p.table.find_method(typ, field_name) p.fn_call(method, method_ph, '', str_typ) // Methods returning "array" (like slice_fast) should return "array_string" if method.typ == 'array' && typ.name.starts_with('array_') { return typ.name } // Array Methods returning `voidptr` (like `last()`) should return element type if method.typ == 'void*' && typ.name.starts_with('array_') { // return typ.name.replace('array_', '') return typ.name.right(6) } if false && p.tok == LSBR { // if is_indexer { return p.index_expr(method.typ, method_ph) } return method.typ } fn (p mut Parser) index_expr(typ string, fn_ph int) string { if p.fileis('int_test') { println('index expr typ=$typ') } // a[0] v := p.expr_var is_map := typ.starts_with('map_') is_str := typ == 'string' is_arr0 := typ.starts_with('array_') is_arr := is_arr0 || typ == 'array' is_ptr := typ == 'byte*' || typ == 'byteptr' || typ.contains('*') is_indexer := p.tok == LSBR mut close_bracket := false if is_indexer { is_fixed_arr := typ[0] == `[` if !is_str && !is_arr && !is_map && !is_ptr && !is_fixed_arr { p.error('Cant [] non-array/string/map. Got type "$typ"') } p.check(LSBR) // Get element type (set `typ` to it) if is_str { typ = 'byte' p.fgen('[') // Direct faster access to .str[i] in builtin package if p.builtin_pkg { p.gen('.str[') close_bracket = true } else { // Bounds check everywhere else p.gen(',') } } if is_fixed_arr { // `[10]int` => `int`, `[10][3]int` => `[3]int` if typ.contains('][') { pos := typ.index_after('[', 1) typ = typ.right(pos) } else { typ = typ.all_after(']') } p.gen('[') close_bracket = true } else if is_ptr { // typ = 'byte' typ = typ.replace('*', '') // modify(mut []string) fix if !is_arr { p.gen('[/*ptr*/') close_bracket = true } } if is_arr { p.fgen('[') // array_int a; a[0] // type is "array_int", need "int" // typ = typ.replace('array_', '') if is_arr0 { if p.fileis('int_test') { println('\nRRRR0 $typ') } typ = typ.right(6) if p.fileis('int_test') { println('RRRR $typ') } } // array a; a.first() voidptr // type is "array", need "void*" if typ == 'array' { typ = 'void*' } // No bounds check in translated from C code if p.translated { // Cast void* to typ*: add (typ*) to the beginning of the assignment : // ((int*)a.data = ... p.cgen.set_placeholder(fn_ph, '(($typ*)(') p.gen('.data))[') } else { p.gen(',') } } // map is tricky // need to replace "m[key] = val" with "tmp = val; map_set(&m, key, &tmp)" // need to replace "m[key]" with "tmp = val; map_get(&m, key, &tmp)" // can only do that later once we know whether there's an "=" or not if is_map { typ = typ.replace('map_', '') if typ == 'map' { typ = 'void*' } p.gen(',') } // expression inside [ ] if is_arr { T := p.table.find_type(p.expression()) if T.parent != 'int' { p.check_types(T.name, 'int') } } else { p.expression() } p.check(RSBR) // if (is_str && p.builtin_pkg) || is_ptr || is_fixed_arr && ! (is_ptr && is_arr) { if close_bracket { p.gen(']/*r$typ $v.is_mut*/') } } // TODO if p.tok in ... // if p.tok in [ASSIGN, PLUS_ASSIGN, MINUS_ASSIGN] if p.tok == ASSIGN || p.tok == PLUS_ASSIGN || p.tok == MINUS_ASSIGN || p.tok == MULT_ASSIGN || p.tok == DIV_ASSIGN || p.tok == XOR_ASSIGN || p.tok == MOD_ASSIGN || p.tok == OR_ASSIGN || p.tok == AND_ASSIGN || p.tok == RIGHT_SHIFT_ASSIGN || p.tok == LEFT_SHIFT_ASSIGN { if is_map || is_arr { // Don't generate indexer right away, but assign it to tmp // p.cgen.start_tmp() } if is_indexer && is_str && !p.builtin_pkg { p.error('strings are immutable') } // println('111 "$p.cgen.cur_line"') assign_pos := p.cgen.cur_line.len p.assigned_type = typ p.assign_statement(v, fn_ph, is_indexer && (is_map || is_arr)) // m[key] = val if is_indexer && (is_map || is_arr) { // a[0] = 7 // curline right now: "a , 0 = 7" // println('222 "$p.cgen.cur_line"') // Cant have &7, so need a tmp tmp := p.get_tmp() tmp_val := p.cgen.cur_line.right(assign_pos) p.cgen.cur_line = p.cgen.cur_line.left(assign_pos) // val := p.cgen.end_tmp() if is_map { p.cgen.set_placeholder(fn_ph, 'map__set(&') } else { if is_ptr { p.cgen.set_placeholder(fn_ph, 'array_set(') } else { p.cgen.set_placeholder(fn_ph, 'array_set(&/*q*/') } } p.gen(', & $tmp)') p.cgen.insert_before('$typ $tmp = $tmp_val;') } return typ return 'void' } // else if p.is_verbose && p.assigned_var != '' { // p.error('didnt assign') // } // m[key]. no =, just a getter else if (is_map || is_arr || (is_str && !p.builtin_pkg)) && is_indexer { // Erase var name we generated earlier: "int a = m, 0" // "m, 0" gets killed since we need to start from scratch. It's messy. // "m, 0" is an index expression, save it before deleting and insert later in map_get() index_expr := p.cgen.cur_line.right(fn_ph) p.cgen.cur_line = p.cgen.cur_line.left(fn_ph) // Can't pass integer literal, because map_get() requires a void* tmp := p.get_tmp() tmp_ok := p.get_tmp() if is_map { p.gen('$tmp') def := type_default(typ) p.cgen.insert_before('$typ $tmp = $def; bool $tmp_ok = map_get($index_expr, & $tmp);') } else if is_arr { if p.translated { p.gen('$index_expr ]') } else { p.gen('( *($typ*) array__get($index_expr) )') } } else if is_str && !p.builtin_pkg { p.gen('string_at($index_expr)') } // Zero the string after map_get() if it's nil, numbers are automatically 0 // This is ugly, but what can I do without generics? // TODO what about user types? if is_map && typ == 'string' { // p.cgen.insert_before('if (!${tmp}.str) $tmp = tos("", 0);') p.cgen.insert_before('if (!$tmp_ok) $tmp = tos("", 0);') } } // else if is_arr && is_indexer{} return typ } // returns resulting type fn (p mut Parser) expression() string { if p.scanner.file_path.contains('test_test') { println('epxression() pass=$p.run tok=') p.print_tok() } p.cgen('/* expr start*/') ph := p.cgen.add_placeholder() mut typ := p.term() is_str := typ.eq('string') // a << b ==> array2_push(&a, b) if p.tok == LEFT_SHIFT { if typ.contains('array_') { // Can't pass integer literal, because push requires a void* // a << 7 => int tmp = 7; array_push(&a, &tmp); // _PUSH(&a, expression(), tmp, string) tmp := p.get_tmp() tmp_typ := typ.right(6)// skip "array_" p.next() // Get the value we are pushing p.gen(', (') // Immutable? Can we push? if !p.expr_var.is_mut && !p.translated { p.error('`$p.expr_var.name` is immutable (can\'t <<)') } p.check_types(p.expression(), tmp_typ) // Pass tmp var info to the _PUSH macro p.gen('), $tmp, $tmp_typ)') // Prepend tmp initialisation and push call // Don't dereference if it's already a mutable array argument (`fn foo(mut []int)`) push_call := if typ.contains('*'){'_PUSH('} else { '_PUSH(&'} // p.cgen.set_placeholder(ph, '_PUSH(&') p.cgen.set_placeholder(ph, push_call) return 'void' } else { p.next() p.gen(' << ') p.check_types(p.expression(), typ) return 'int' } } // a in [1,2,3] if p.tok == IN { p.fgen(' ') p.check(IN) p.fgen(' ') p.gen(', ') arr_typ := p.expression() if !arr_typ.starts_with('array_') { p.error('`in` requires an array') } T := p.table.find_type(arr_typ) if !T.has_method('contains') { p.error('$arr_typ has no method `contains`') } // `typ` is element type p.cgen.set_placeholder(ph, '_IN($typ, ') p.gen(')') return 'bool' } if p.tok == RIGHT_SHIFT { p.next() p.gen(' >> ') p.check_types(p.expression(), typ) return 'int' } if p.tok == DOT { for p.tok == DOT { typ = p.dot(typ, 0) } } // + - | for p.tok == PLUS || p.tok == MINUS || p.tok == PIPE || p.tok == AMP || p.tok == XOR { // for p.tok in [PLUS, MINUS, PIPE, AMP, XOR] { tok_op := p.tok is_num := typ == 'void*' || typ == 'byte*' || is_number_type(typ) p.next() if is_str && tok_op == PLUS { p.cgen.set_placeholder(ph, 'string_add(') p.gen(',') } // 3 + 4 else if is_num { p.gen(tok_op.str()) } // Vec + Vec else { if p.translated { p.gen(tok_op.str() + ' /*doom hack*/')// TODO hack to fix DOOM's angle_t } else { p.gen(',') } } p.check_types(p.term(), typ) if is_str && tok_op == PLUS { p.gen(')') } // Make sure operators are used with correct types if !p.translated && !is_str && !is_num { T := p.table.find_type(typ) if tok_op == PLUS { if T.has_method('+') { p.cgen.set_placeholder(ph, typ + '_plus(') p.gen(')') } else { p.error('operator + not defined on `$typ`') } } else if tok_op == MINUS { if T.has_method('-') { p.cgen.set_placeholder(ph, '${typ}_minus(') p.gen(')') } else { p.error('operator - not defined on `$typ`') } } } } return typ } fn (p mut Parser) term() string { line_nr := p.scanner.line_nr if p.fileis('fn_test') { println('\nterm() $line_nr') } typ := p.unary() if p.fileis('fn_test') { println('2: $line_nr') } // `*` on a newline? Can't be multiplication, only dereference if p.tok == MUL && line_nr != p.scanner.line_nr { return typ } for p.tok == MUL || p.tok == DIV || p.tok == MOD { tok := p.tok is_div := tok == DIV is_mod := tok == MOD // is_mul := tok == MOD p.next() p.gen(tok.str())// + ' /*op2*/ ') p.fgen(' ' + tok.str() + ' ') if is_div && p.tok == INT && p.lit == '0' { p.error('division by zero') } if is_mod && (is_float_type(typ) || !is_number_type(typ)) { p.error('operator MOD requires integer types') } p.check_types(p.unary(), typ) } return typ } fn (p mut Parser) unary() string { mut typ := '' tok := p.tok switch tok { case NOT: p.gen('!') p.next() typ = 'bool' p.bool_expression() case BIT_NOT: p.gen('~') p.next() typ = p.bool_expression() default: typ = p.factor() } return typ } fn (p mut Parser) factor() string { mut typ := '' tok := p.tok switch tok { case INT: p.gen(p.lit) p.fgen(p.lit) typ = 'int' // typ = 'number' if p.lit.starts_with('u') { typ = 'long' } if p.lit.contains('.') || p.lit.contains('e') { // typ = 'f64' typ = 'float' } case FLOAT: // TODO remove float typ = 'float' // typ = 'f64' // p.gen('(f64)$p.lit') p.gen('$p.lit') p.fgen(p.lit) case MINUS: p.gen('-') p.fgen('-') p.next() return p.factor() // Variable case SIZEOF: p.gen('sizeof(') p.fgen('sizeof(') p.next() p.check(LPAR) mut sizeof_typ := p.get_type() if sizeof_typ.ends_with('*') { // Move * from the end to the beginning, as C requires sizeof_typ = '*' + sizeof_typ.left(sizeof_typ.len - 1) } p.check(RPAR) p.gen('$sizeof_typ)') p.fgen('$sizeof_typ)') return 'int' case AMP: return p.name_expr() case DOT: return p.name_expr()// `.green` (enum) case MUL: return p.name_expr() case NAME: // map[string]int if p.lit == 'map' && p.peek() == LSBR { return p.map_init() } if p.lit == 'json' && p.peek() == DOT { return p.js_decode() } typ = p.name_expr() return typ case DEFAULT: p.next() p.next() name := p.check_name() if name != 'T' { p.error('default needs T') } p.gen('default(T)') p.next() return 'T' case LPAR: p.gen('(/*lpar*/') p.next()// ( typ = p.bool_expression() // Hack. If this `)` referes to a ptr cast `(*int__)__`, it was already checked // TODO: fix parser so that it doesn't think it's a par expression when it sees `(` in // __(__*int)( if !p.ptr_cast { p.check(RPAR) } p.ptr_cast = false p.gen(')') return typ case CHAR: p.char_expr() typ = 'byte' return typ case STRING: p.string_expr() typ = 'string' return typ case FALSE: typ = 'bool' p.gen('0') p.fgen('false') case TRUE: typ = 'bool' p.gen('1') p.fgen('true') case LSBR: // `[1,2,3]` or `[]` or `[20]byte` // TODO have to return because arrayInit does next() // everything should do next() return p.array_init() case LCBR: // { user | name :'new name' } return p.assoc() case IF: typ = p.if_st(true) return typ default: next := p.peek() println('PREV=${p.prev_tok.str()}') println('NEXT=${next.str()}') p.error('unexpected token: `${p.tok.str()}`') } p.next()// TODO everything should next() return typ } // { user | name: 'new name' } fn (p mut Parser) assoc() string { // println('assoc()') p.next() name := p.check_name() if !p.cur_fn.known_var(name) { p.error('unknown variable `$name`') } var := p.cur_fn.find_var(name) p.check(PIPE) p.gen('($var.typ){') mut fields := []string// track the fields user is setting, the rest will be copied from the old object for p.tok != RCBR { field := p.check_name() fields << field p.gen('.$field = ') p.check(COLON) p.bool_expression() p.gen(',') if p.tok != RCBR { p.check(COMMA) } } // Copy the rest of the fields T := p.table.find_type(var.typ) for ffield in T.fields { f := ffield.name if f in fields { continue } p.gen('.$f = $name . $f,') } p.check(RCBR) p.gen('}') return var.typ } fn (p mut Parser) char_expr() { p.gen('\'$p.lit\'') p.next() } fn format_str(str string) string { str = str.replace('"', '\\"') str = str.replace('\n', '\\n') return str } fn (p mut Parser) typ_to_fmt(typ string) string { t := p.table.find_type(typ) if t.parent == 'int' { return '%d' } switch typ { case 'string': return '%.*s' case 'ustring': return '%.*s' case 'long': return '%ld' case 'byte': return '%d' case 'int': return '%d' case 'char': return '%d' case 'byte': return '%d' case 'bool': return '%d' case 'u32': return '%d' case 'float': return '%f' case 'double', 'f64': return '%f' case 'i64': return '%lld' case 'byte*': return '%s' // case 'array_string': return '%s' // case 'array_int': return '%s' case 'void': p.error('cannot interpolate this value') default: p.error('unhandled sprintf format "$typ" ') } return '' } fn (p mut Parser) string_expr() { // println('STRING EXPR') str := p.lit p.fgen('\'$str\'') // No ${}, just return simple string if p.peek() != DOLLAR { // println('before format: "$str"') f := format_str(str) // println('after format: "$str"') if p.calling_c || p.translated { p.gen('"$f"') } else { p.gen('tos2("$f")')// TODO dont call strlen here } p.next() return } // tmp := p.get_tmp() mut args := '"' mut format := '"' for p.tok == STRING { // Add the string between %d's format += format_str(p.lit) p.next()// skip $ if p.tok != DOLLAR { continue } // Handle DOLLAR p.next() // Get bool expr inside a temp var p.cgen.start_tmp() typ := p.bool_expression() mut val := p.cgen.end_tmp() val = val.trim_space() args += ', $val' if typ == 'string' { // args += '.str' // printf("%.*s", a.len, a.str) syntax args += '.len, ${val}.str' } if typ == 'ustring' { args += '.len, ${val}.s.str' } // Custom format? ${t.hour:02d} custom := p.tok == COLON if custom { format += '%' p.next() if p.tok == DOT { format += '.' p.next() } format += p.lit// 02 p.next() format += p.lit// f // println('custom str F=$format') p.next() } else { format += p.typ_to_fmt(typ) } } // println("hello %d", num) optimization. if p.cgen.nogen { return } // Don't allocate a new string, just print it. TODO HACK PRINT OPT cur_line := p.cgen.cur_line.trim_space() if cur_line.contains('println(') && p.tok != PLUS && !p.is_prod && !cur_line.contains('string_add') { p.cgen.cur_line = cur_line.replace('println(', 'printf(') p.gen('$format\\n$args') return } // '$age'! means the user wants this to be a tmp string (uses global buffer, no allocation, // won't be used again) if p.tok == NOT { p.next() p.gen('_STR_TMP($format$args)') } else { // Otherwise do ugly len counting + allocation + sprintf p.gen('_STR($format$args)') } } // m := map[string]int{} fn (p mut Parser) map_init() string { p.next() p.check(LSBR) key_type := p.check_name() if key_type != 'string' { p.error('only string key maps allowed for now') } p.check(RSBR) val_type := p.check_name() if !p.table.known_type(val_type) { p.error('map init unknown type "$val_type"') } p.gen('new_map(1, sizeof($val_type))') p.check(LCBR) p.check(RCBR) return 'map_$val_type' } // [1,2,3] fn (p mut Parser) array_init() string { p.check(LSBR) is_integer := p.tok == INT lit := p.lit mut typ := '' new_arr_ph := p.cgen.add_placeholder() mut i := 0 pos := p.cgen.cur_line.len// remember cur line to fetch first number in cgen for [0; 10] for p.tok != RSBR { val_typ := p.bool_expression() // Get type of the first expression if i == 0 { typ = val_typ // fixed width array initialization? (`arr := [20]byte`) if is_integer && p.tok == RSBR && p.peek() == NAME { nextc := p.scanner.text[p.scanner.pos + 1] // TODO whitespace hack // Make sure there's no space in `[10]byte` if !nextc.is_space() { p.check(RSBR) name := p.check_name() if p.table.known_type(name) { p.cgen.cur_line = '' p.gen('{} /* arkek init*/') return '[$lit]$name' } else { p.error('bad type `$name`') } } } } if val_typ != typ { if !p.check_types_no_throw(val_typ, typ) { p.error('bad array element type `$val_typ` instead of `$typ`') } } if p.tok != RSBR && p.tok != SEMICOLON { p.gen(',') p.check(COMMA) } i++ // Repeat (a = [0;5] ) if i == 1 && p.tok == SEMICOLON { p.check_space(SEMICOLON) val := p.cgen.cur_line.right(pos) // p.cgen.cur_line = '' p.cgen.cur_line = p.cgen.cur_line.left(pos) // Special case for zero if false && val.trim_space() == '0' { p.gen('array_repeat( & V_ZERO, ') } else { tmp := p.get_tmp() p.cgen.insert_before('$typ $tmp = $val;') p.gen('array_repeat(&$tmp, ') } p.check_types(p.bool_expression(), 'int') p.gen(', sizeof($typ) )') p.check(RSBR) return 'array_$typ' } } p.check(RSBR) // type after `]`? (e.g. "[]string") if p.tok != NAME && i == 0 { p.error('specify array type: `[]typ` instead of `[]`') } if p.tok == NAME && i == 0 { // vals.len == 0 { typ = p.get_type() // println('GOT TYP after [] $typ') } // ! after array => no malloc and no copy no_alloc := p.tok == NOT if no_alloc { p.next() } // [1,2,3]!! => [3]int{1,2,3} is_fixed_size := p.tok == NOT if is_fixed_size { p.next() p.gen(' }') if !p.first_run() { // If we are defining a const array, we don't need to specify the type: // `a = {1,2,3}`, not `a = (int[]) {1,2,3}` if p.inside_const { p.cgen.set_placeholder(new_arr_ph, '{ ') } else { p.cgen.set_placeholder(new_arr_ph, '($typ[]) { ') } } return '[$i]$typ' } // if ptr { // typ += '_ptr" // } mut new_arr := 'new_array_from_c_array' if no_alloc { new_arr += '_no_alloc' } p.gen(' })') // p.gen('$new_arr($vals.len, $vals.len, sizeof($typ), ($typ[]) $c_arr );') // TODO why need !first_run()?? Otherwise it goes to the very top of the out.c file if !p.first_run() { p.cgen.set_placeholder(new_arr_ph, '$new_arr($i, $i, sizeof($typ), ($typ[]) { ') } typ = 'array_$typ' p.register_array(typ) return typ } fn (p mut Parser) register_array(typ string) { if typ.contains('*') { println('bad arr $typ') return } if !p.table.known_type(typ) { p.register_type_with_parent(typ, 'array') p.cgen.typedefs << 'typedef array $typ;' } } // name == 'User' fn (p mut Parser) struct_init(is_c_struct_init bool) string { p.is_struct_init = true mut typ := p.get_type() p.scanner.fmt_out.cut(typ.len) ptr := typ.contains('*') p.check(LCBR) // tmp := p.get_tmp() if !ptr { if typ == 'tm' { p.gen('(struct tm) {')// TODO struct tm hack, handle all C structs } else { p.gen('($typ){') } } else { // TODO tmp hack for 0 pointers init // &User{!} ==> 0 if p.tok == NOT { p.next() p.gen('0') p.check(RCBR) return typ } mut type_gen := typ.replace('*', '') // All V types are typedef'ed, C structs aren't, so we need to prepend "struct " if is_c_struct_init { type_gen = 'struct $type_gen' } // p.gen('malloc(sizeof($type_gen)); \n') no_star := typ.replace('*', '') p.gen('ALLOC_INIT($no_star, {') } // Loop thru all struct init keys and assign values // u := User{age:20, name:'bob'} // Remember which fields were set, so that we dont have to zero them later mut inited_fields := []string peek := p.peek() if peek == COLON || p.tok == RCBR { t := p.table.find_type(typ) for p.tok != RCBR { field := p.check_name() if !t.has_field(field) { p.error('`$t.name` has no field `$field`') } inited_fields << field p.gen('.$field = ') p.check(COLON) p.fspace() p.expression() if p.tok == COMMA { p.next() } if p.tok != RCBR { p.gen(',') } p.fgenln('') } // If we already set some fields, need to prepend a comma if t.fields.len != inited_fields.len && inited_fields.len > 0 { p.gen(',') } // Zero values: init all fields (ints to 0, strings to '' etc) for i, field in t.fields { // println('### field.name') // Skip if this field has already been assigned to if inited_fields.contains(field.name) { continue } field_typ := field.typ if !p.builtin_pkg && field_typ.ends_with('*') && field_typ.contains('Cfg') { p.error('pointer field `${typ}.${field.name}` must be initialized') } def_val := type_default(field_typ) if def_val != '' { p.gen('.$field.name = $def_val') if i != t.fields.len - 1 { p.gen(',') } } } } // Point{3,4} syntax else { mut T := p.table.find_type(typ) // Aliases (TODO Hack, implement proper aliases) if T.fields.len == 0 && T.parent != '' { T = p.table.find_type(T.parent) } for i, ffield in T.fields { expr_typ := p.bool_expression() if !p.check_types_no_throw(expr_typ, ffield.typ) { p.error('field value #${i+1} `$ffield.name` has type `$ffield.typ`, got `$expr_typ` ') } if i < T.fields.len - 1 { if p.tok != COMMA { p.error('too few values in `$typ` literal (${i+1} instead of $T.fields.len)') } p.gen(',') p.next() } } // Allow `user := User{1,2,3,}` // The final comma will be removed by vfmt, since we are not calling `p.fgen()` if p.tok == COMMA { p.next() } if p.tok != RCBR { p.error('too many fields initialized: `$typ` has $T.fields.len field(s)') } } p.gen('}') if ptr { p.gen(')') } p.check(RCBR) p.is_struct_init = false // println('struct init typ=$typ') return typ } // `f32(3)` // tok is `f32` or `)` if `(*int)(ptr)` fn (p mut Parser) cast(typ string) string { // typ := p.lit if p.file_path.contains('test') { println('CAST TYP=$typ tok=') p.print_tok() } p.gen('($typ)(') // p.fgen(typ) p.next() if p.tok == RPAR { // skip `)` if it's `(*int)(ptr)`, not `int(a)` p.ptr_cast = true p.next() } p.check(LPAR) p.gen('/*77*/') expr_typ := p.bool_expression() p.check(RPAR) p.gen(')') if typ == 'string' && expr_typ == 'int' { p.error('cannot convert `$expr_typ` to `$typ`') } return typ } fn (p mut Parser) get_tmp() string { p.tmp_cnt++ return 'tmp$p.tmp_cnt' } fn (p mut Parser) get_tmp_counter() int { p.tmp_cnt++ return p.tmp_cnt } fn (p mut Parser) comp_time() { p.next() if p.tok == IF { p.next() not := p.tok == NOT if not { p.next() } name := p.check_name() if name in SupportedPlatforms { if not { p.genln('#ifndef $name') } else { p.genln('#ifdef $name') } p.check(LCBR) p.statements_no_curly_end() if ! (p.tok == DOLLAR && p.peek() == ELSE) { p.genln('#endif') } } else { println('Supported platforms:') println(SupportedPlatforms) p.error('unknown platform `$name`') } } else if p.tok == FOR { p.next() name := p.check_name() if name != 'field' { p.error('for field only') } p.check(IN) p.check_name() p.check(DOT) p.check_name()// fields p.check(LCBR) // for p.tok != RCBR && p.tok != EOF { res_name := p.check_name() println(res_name) p.check(DOT) p.check(DOLLAR) p.check(NAME) p.check(ASSIGN) p.cgen.start_tmp() p.bool_expression() val := p.cgen.end_tmp() println(val) p.check(RCBR) // } } else if p.tok == ELSE { p.next() p.check(LCBR) p.genln('#else') p.statements_no_curly_end() p.genln('#endif') } else { p.error('bad comptime expr') } } fn (p mut Parser) chash() { hash := p.lit.trim_space() // println('chsh() file=$p.file is_sig=${p.is_sig()} hash="$hash"') p.next() is_sig := p.is_sig() if is_sig { // p.cgen.nogen = true } if hash == 'live' { if p.is_so { return } p.is_live = true return } if hash.starts_with('flag ') { mut flag := hash.right(5) // No the right os? Skip! // mut ok := true if hash.contains('linux') && p.os != LINUX { return } else if hash.contains('darwin') && p.os != MAC { return } else if hash.contains('windows') && p.os != WINDOWS { return } // Remove "linux" etc from flag if flag.contains('linux') || flag.contains('darwin') || flag.contains('windows') { pos := flag.index(' ') flag = flag.right(pos) } flag = flag.trim_space() if p.table.flags.contains(flag) { return } p.log('adding flag "$flag"') p.table.flags << flag// .all_after(' ')) // } return } if hash.starts_with('include') { if p.first_run() && !is_sig { p.cgen.includes << '#$hash' return } } else if hash.starts_with('typedef') { if p.first_run() { p.cgen.typedefs << '$hash' } } // TODO remove after ui_mac.m is removed else if hash.contains('embed') { pos := hash.index('embed') + 5 file := hash.right(pos) if p.build_mode != DEFAULT_MODE { p.genln('#include $file') } } else if is_c_pre(hash) { // Skip not current OS hack if hash.starts_with('ifdef') { os := hash.right(6).trim_space() // println('ifdef "$os" $p.scanner.line_nr') if os == 'linux' && p.os != LINUX { // println('linux ifdef skip') for p.tok != EOF { if p.tok == HASH && p.lit.contains('else') || p.lit.contains('endif') { break } // println('skipping') p.next() } } } // Move defines on top (like old gdefine) if hash.contains('define') { p.cgen.includes << '#$hash' } else { p.genln('#$hash') } } else { if p.cur_fn.name == '' { // p.error('# outside of fn') } p.genln(hash) } // p.cgen.nogen = false // println('HASH=$hash') } fn is_c_pre(hash string) bool { return hash.contains('ifdef') || hash.contains('define') || hash.contains('endif') || hash.contains('elif') || hash.contains('ifndef') || (hash.contains('else') && !hash.contains('{')) } fn (p mut Parser) if_st(is_expr bool) string { if is_expr { if p.fileis('if_expr') { println('IF EXPR') } p.inside_if_expr = true p.gen('(') } else { p.gen('if (') p.fgen('if ') } p.next() p.check_types(p.bool_expression(), 'bool') if is_expr { p.gen(') ? (') } else { p.genln(') {') p.fgenln('{') p.genln('/*if*/') } p.fgen(' ') p.check(LCBR) mut typ := '' // if { if hack if p.tok == IF && p.inside_if_expr { println('AAAWWFAFAF') typ = p.factor() println('QWEWQE typ=$typ') p.next() } else { typ = p.statements() } // println('IF TYp=$typ') if p.tok == ELSE { p.next() if p.tok == IF { p.gen(' else ') return p.if_st(is_expr) // return '' } if is_expr { p.gen(') : (') } else { p.genln(' else { ') p.genln('/*else if*/') } p.check(LCBR) // statements() returns the type of the last statement typ = p.statements() p.inside_if_expr = false if is_expr { p.gen(')') } return typ } p.inside_if_expr = false if p.fileis('test_test') { println('if ret typ="$typ" line=$p.scanner.line_nr') } return typ } fn (p mut Parser) for_st() { p.check(FOR) p.fgen(' ') p.for_expr_cnt++ next_tok := p.peek() debug := p.scanner.file_path.contains('r_draw') if debug { println('\n\nFOR {') } p.cur_fn.open_scope() if p.tok == LCBR { // Infinite loop p.gen('while (1) {') } else if p.tok == MUT { p.error('`mut` is not required in for loops') } // for i := 0; i < 10; i++ { else if next_tok == DECL_ASSIGN || next_tok == ASSIGN || p.tok == SEMICOLON { if debug { println('for 1') } p.genln('for (') if next_tok == DECL_ASSIGN { p.var_decl() } else if p.tok != SEMICOLON { // allow `for ;; i++ {` // Allow `for i = 0; i < ...` p.statement(false) } if debug { println('for 2') } p.check(SEMICOLON) p.gen(' ; ') p.fgen(' ') if p.tok != SEMICOLON { p.bool_expression() } if debug { println('for 3') } p.check(SEMICOLON) p.gen(' ; ') p.fgen(' ') if p.tok != LCBR { p.statement(false) } if debug { println('for 4') } p.fgen(' ') p.genln(') { ') } // for i, val in array else if p.peek() == COMMA { // for i, val in array { ==> // // array_int tmp = array; // for (int i = 0; i < tmp.len; i++) { // int val = tmp[i]; i := p.check_name() p.check(COMMA) val := p.check_name() p.fgen(' ') p.check(IN) p.fgen(' ') tmp := p.get_tmp() p.cgen.start_tmp() typ := p.bool_expression() expr := p.cgen.end_tmp() p.genln('$typ $tmp = $expr ;') var_typ := typ.right(6) // typ = strings.Replace(typ, "_ptr", "*", -1) // Register temp var val_var := Var { name: val typ: var_typ // parent_fn: p.cur_fn ptr: typ.contains('*') } p.register_var(val_var) i_var := Var { name: i typ: 'int' // parent_fn: p.cur_fn is_mut: true } p.register_var(i_var) p.genln(';\nfor (int $i = 0; $i < $tmp .len; $i ++) {') p.genln('$var_typ $val = (($var_typ *) $tmp . data)[$i];') } // `for val in vals` else if p.peek() == IN { val := p.check_name() p.fgen(' ') p.check(IN) p.fspace() tmp := p.get_tmp() p.cgen.start_tmp() typ := p.bool_expression() expr := p.cgen.end_tmp() // println('if in:') // println(p.strtok()) is_range := p.tok == DOTDOT mut range_end := '' if is_range { p.check_types(typ, 'int') p.check_space(DOTDOT) p.cgen.start_tmp() p.check_types(p.bool_expression(), 'int') range_end = p.cgen.end_tmp() } is_arr := typ.contains('array') is_str := typ == 'string' // ////if !typ.contains('array') && typ != 'string' { if !is_arr && !is_str && !is_range { p.error('`for in` requires an array or a string but got `$typ`') } p.genln('$typ $tmp = $expr;') // TODO var_type := if... mut var_type := '' if is_arr { var_type = typ.right(6)// all after `array_` } else if is_str { var_type = 'byte' } else if is_range { var_type = 'int' } // println('for typ=$typ vartyp=$var_typ') // Register temp var val_var := Var { name: val typ: var_type ptr: typ.contains('*') } p.register_var(val_var) i := p.get_tmp() if is_range { p.genln(';\nfor (int $i = $tmp; $i < $range_end; $i++) {') } else { p.genln(';\nfor (int $i = 0; $i < $tmp .len; $i ++) {') } if is_arr { p.genln('$var_type $val = (($var_type *) ${tmp}.data)[$i];') } else if is_str { p.genln('$var_type $val = (($var_type *) ${tmp}.str)[$i];') } else if is_range { p.genln('$var_type $val = $i;') } } else { // `for a < b {` p.gen('while (') p.check_types(p.bool_expression(), 'bool') p.genln(') {') } p.check(LCBR) p.statements() p.cur_fn.close_scope() p.for_expr_cnt-- } fn (p mut Parser) switch_statement() { p.next() p.cgen.start_tmp() typ := p.bool_expression() expr := p.cgen.end_tmp() p.check(LCBR) mut i := 0 for p.tok == CASE || p.tok == DEFAULT { if p.tok == DEFAULT { p.genln('else { // default:') p.next() p.check(COLON) p.statements() break } if i > 0 { p.gen('else ') } p.gen('if (') // Multiple checks separated by comma mut got_comma := false for { if got_comma { p.gen(') || ') } if typ == 'string' { p.gen('string_eq($expr, ') } else { p.gen('($expr == ') } if p.tok == CASE || p.tok == DEFAULT { p.next() } p.bool_expression() if p.tok != COMMA { break } p.check(COMMA) got_comma = true } p.check(COLON) p.gen(')) {') p.genln('/* case */') p.statements() i++ } } fn (p mut Parser) assert_statement() { p.check(ASSERT) p.fspace() tmp := p.get_tmp() p.gen('bool $tmp = ') p.check_types(p.bool_expression(), 'bool') // TODO print "expected: got" for failed tests filename := p.file_path p.genln(';\n if (!$tmp) { puts("\\x1B[31mFAILED: $p.cur_fn.name() in $filename:$p.scanner.line_nr\\x1B[0m"); g_test_ok = 0 ; // TODO // Maybe print all vars in a test function if it fails? } else { puts("\\x1B[32mPASSED: $p.cur_fn.name()\\x1B[0m"); }') } fn (p mut Parser) return_st() { p.cgen.insert_before(p.cur_fn.defer) p.gen('return ') if p.cur_fn.name == 'main' { p.gen(' 0') } p.check(RETURN) p.fgen(' ') fn_returns := p.cur_fn.typ != 'void' if fn_returns { if p.tok == RCBR { p.error('`$p.cur_fn.name` needs to return `$p.cur_fn.typ`') } else { ph := p.cgen.add_placeholder() expr_type := p.bool_expression() // Automatically wrap an object inside an option if the function returns an option if p.cur_fn.typ.ends_with(expr_type) && p.cur_fn.typ.starts_with('Option_') { p.cgen.set_placeholder(ph, 'opt_ok(& ') p.gen(')') } p.check_types(expr_type, p.cur_fn.typ) } } else { // Don't allow `return val` in functions that don't return anything // if p.tok != RCBR && p.tok != HASH { if false && p.tok == NAME || p.tok == INT { p.error('function `$p.cur_fn.name` does not return a value') } } p.returns = true } fn (p mut Parser) at() { vals := p.lit.split(' ') if vals.len != 2 { p.error('Bad @ syntax (type name)') } typ := vals[0] // name := vals[1] if !p.table.known_type(typ) { p.table.register_type(typ) } // if p.fn == "" { // p.table.registerVar(&Var{ // Name: name, // Type: typ, // Cat: CatFunc, // }) // } else { // // fn := p.table.findVar(p.fn) // p.table.registerFnVar(&Var{ // Name: name, // Type: typ, // Cat: CatVar, // }, fn) // } p.next() } fn prepend_pkg(pkg, name string) string { return '${pkg}__${name}' } fn (p &Parser) prepend_pkg(name string) string { return prepend_pkg(p.pkg, name) } fn (p mut Parser) go_statement() { p.check(GO) // TODO copypasta of name_expr() ? // Method if p.peek() == DOT { var_name := p.lit v := p.cur_fn.find_var(var_name) p.cur_fn.mark_var_used(v) p.next() p.check(DOT) typ := p.table.find_type(v.typ) mut method := p.table.find_method(typ, p.lit) p.async_fn_call(method, 0, var_name, v.typ) } // Normal function else { f := p.table.find_fn(p.lit) if f.name == 'println' { p.error('`go` cannot be used with `println`') } // println(f.name) p.async_fn_call(f, 0, '', '') } } fn (p mut Parser) register_var(v Var) { if v.line_nr == 0 { v.line_nr = p.scanner.line_nr } p.cur_fn.register_var(v) } // user:=jsdecode(User, user_json_string) fn (p mut Parser) js_decode() string { p.check(NAME)// json p.check(DOT) op := p.check_name() if op == 'decode' { // User tmp2; tmp2.foo = 0; tmp2.bar = 0;// I forgot to zero vals before => huge bug // Option_User tmp3 = jsdecode_User(json_parse( s), &tmp2); ; // if (!tmp3 .ok) { // return // } // User u = *(User*) tmp3 . data; // TODO remove this (generated in or {} block handler) p.check(LPAR) typ := p.get_type() p.check(COMMA) p.cgen.start_tmp() p.check_types(p.bool_expression(), 'string') expr := p.cgen.end_tmp() p.check(RPAR) tmp := p.get_tmp() cjson_tmp := p.get_tmp() mut decl := '$typ $tmp; ' // Init the struct T := p.table.find_type(typ) for field in T.fields { def_val := type_default(field.typ) if def_val != '' { decl += '$tmp . $field.name = $def_val;\n' } } p.gen_json_for_type(T) decl += 'cJSON* $cjson_tmp = json__json_parse($expr);' p.cgen.insert_before(decl) // p.gen('jsdecode_$typ(json_parse($expr), &$tmp);') p.gen('json__jsdecode_$typ($cjson_tmp, &$tmp); cJSON_Delete($cjson_tmp);') opt_type := 'Option_$typ' p.cgen.typedefs << 'typedef Option $opt_type;' p.table.register_type(opt_type) return opt_type } else if op == 'encode' { p.check(LPAR) p.cgen.start_tmp() typ := p.bool_expression() T := p.table.find_type(typ) p.gen_json_for_type(T) expr := p.cgen.end_tmp() p.check(RPAR) p.gen('json__json_print(json__jsencode_$typ($expr))') return 'string' } else { p.error('bad json op "$op"') } return '' } fn is_compile_time_const(s string) bool { s = s.trim_space() if s == '' { return false } if s.contains('\'') { return true } for c in s { if ! ((c >= `0` && c <= `9`) || c == `.`) { return false } } return true } // fmt helpers fn (scanner mut Scanner) fgen(s string) { if scanner.fmt_line_empty { s = repeat_char(`\t`, scanner.fmt_indent) + s } scanner.fmt_out.write(s) scanner.fmt_line_empty = false } fn (scanner mut Scanner) fgenln(s string) { if scanner.fmt_line_empty { s = repeat_char(`\t`, scanner.fmt_indent) + s } scanner.fmt_out.writeln(s) scanner.fmt_line_empty = true } fn (p mut Parser) fgen(s string) { p.scanner.fgen(s) } fn (p mut Parser) fspace() { p.fgen(' ') } fn (p mut Parser) fgenln(s string) { p.scanner.fgenln(s) }