module rand const clock_seq_hi_and_reserved_valid_values = [`8`, `9`, `a`, `b`] // uuid_v4 generates a random (v4) UUID // See https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random) pub fn uuid_v4() string { return internal_uuid_v4(mut default_rng) } fn internal_uuid_v4(mut rng PRNG) string { buflen := 36 mut buf := unsafe { malloc_noscan(37) } mut i_buf := 0 mut x := u64(0) mut d := u8(0) for i_buf < buflen { mut c := 0 x = rng.u64() // do most of the bit manipulation at once: x &= 0x0F0F0F0F0F0F0F0F x += 0x3030303030303030 // write the ASCII codes to the buffer: for c < 8 && i_buf < buflen { d = u8(x) unsafe { buf[i_buf] = if d > 0x39 { d + 0x27 } else { d } } i_buf++ c++ x = x >> 8 } } // there are still some random bits in x: x = x >> 8 d = u8(x) unsafe { // From https://www.ietf.org/rfc/rfc4122.txt : // >> Set the two most significant bits (bits 6 and 7) of the clock_seq_hi_and_reserved // >> to zero and one, respectively. // all nibbles starting with 10 are: 1000, 1001, 1010, 1011 -> hex digits `8`, `9`, `a`, `b` // these are stored in clock_seq_hi_and_reserved_valid_values, choose one of them at random: buf[19] = rand.clock_seq_hi_and_reserved_valid_values[d & 0x03] // >> Set the four most significant bits (bits 12 through 15) of the // >> time_hi_and_version field to the 4-bit version number from Section 4.1.3. buf[14] = `4` buf[8] = `-` buf[13] = `-` buf[18] = `-` buf[23] = `-` buf[buflen] = 0 // ensure the string will be 0 terminated, just in case // for i in 0..37 { println('i: ${i:2} | ${buf[i].ascii_str()} | ${buf[i].hex()} | ${buf[i]:08b}') } return buf.vstring_with_len(buflen) } } const ulid_encoding = '0123456789ABCDEFGHJKMNPQRSTVWXYZ' fn internal_ulid_at_millisecond(mut rng PRNG, unix_time_milli u64) string { buflen := 26 mut buf := unsafe { malloc_noscan(27) } mut t := unix_time_milli mut i := 9 for i >= 0 { unsafe { buf[i] = rand.ulid_encoding[t & 0x1F] } t = t >> 5 i-- } // first rand set mut x := rng.u64() i = 10 for i < 19 { unsafe { buf[i] = rand.ulid_encoding[x & 0x1F] } x = x >> 5 i++ } // second rand set x = rng.u64() for i < 26 { unsafe { buf[i] = rand.ulid_encoding[x & 0x1F] } x = x >> 5 i++ } unsafe { buf[26] = 0 return buf.vstring_with_len(buflen) } } fn internal_string_from_set(mut rng PRNG, charset string, len int) string { if len == 0 { return '' } mut buf := unsafe { malloc_noscan(len + 1) } for i in 0 .. len { unsafe { buf[i] = charset[intn(charset.len) or { 0 }] } } unsafe { buf[len] = 0 } return unsafe { buf.vstring_with_len(len) } } fn deinit() { unsafe { default_rng.free() // free the implementation free(default_rng) // free the interface wrapper itself } } // init initializes the default RNG. fn init() { default_rng = new_default() C.atexit(deinit) } fn read_32(mut rng PRNG, mut buf []byte) { p32 := unsafe { &u32(buf.data) } u32s := buf.len / 4 for i in 0 .. u32s { unsafe { *(p32 + i) = rng.u32() } } for i in u32s * 4 .. buf.len { buf[i] = rng.u8() } } fn read_64(mut rng PRNG, mut buf []byte) { p64 := unsafe { &u64(buf.data) } u64s := buf.len / 8 for i in 0 .. u64s { unsafe { *(p64 + i) = rng.u64() } } for i in u64s * 8 .. buf.len { buf[i] = rng.u8() } } fn read_internal(mut rng PRNG, mut buf []byte) { match rng.block_size() { 32 { read_32(mut rng, mut buf) } 64 { read_64(mut rng, mut buf) } else { for i in 0 .. buf.len { buf[i] = rng.u8() } } } }