// Copyright (c) 2019-2022 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module checker import v.ast // TODO: promote(), check_types(), symmetric_check() and check() overlap - should be rearranged pub fn (mut c Checker) check_types(got ast.Type, expected ast.Type) bool { if got == expected { return true } got_is_ptr := got.is_ptr() exp_is_ptr := expected.is_ptr() if c.pref.translated { if expected.is_int() && got.is_int() { return true } if expected == ast.byteptr_type { return true } if expected == ast.voidptr_type { return true } if expected == ast.bool_type && (got.is_any_kind_of_pointer() || got.is_int()) { return true } if expected.is_any_kind_of_pointer() { //&& !got.is_any_kind_of_pointer() { // Allow `int` as `&i8` etc in C code. deref := expected.deref() // deref := expected.set_nr_muls(0) got_sym := c.table.sym(got) if deref.is_number() && (got_sym.is_number() || got_sym.kind == .enum_) { return true } } // allow rune -> any int and vice versa if (expected == ast.rune_type && got.is_int()) || (got == ast.rune_type && expected.is_int()) { return true } got_sym := c.table.sym(got) expected_sym := c.table.sym(expected) if got_sym.kind == .enum_ { // Allow ints as enums if expected_sym.is_number() { return true } } else if got_sym.kind == .array_fixed { // Allow fixed arrays as `&i8` etc if expected_sym.is_number() { return true } else if expected.is_any_kind_of_pointer() { return true } } else if expected_sym.kind == .array_fixed { if got_sym.is_number() && got.is_any_kind_of_pointer() { return true } else if got_sym.kind == .array { info := expected_sym.info as ast.ArrayFixed info2 := got_sym.info as ast.Array if c.check_types(info.elem_type, info2.elem_type) { return true } } } if expected_sym.kind == .enum_ && got_sym.is_number() { // Allow enums as numbers return true } if got_is_ptr && exp_is_ptr { // deref_sym := c.table.sym(expected.deref()) // set_nr_muls(0)) if expected_sym.is_number() && got_sym.is_number() { // Allow `&&u8` used as `&&int` etc return true } } } if got_is_ptr && exp_is_ptr { if got.nr_muls() != expected.nr_muls() { return false } } exp_idx := expected.idx() got_idx := got.idx() if exp_idx == got_idx { return true } if exp_idx == ast.voidptr_type_idx || exp_idx == ast.byteptr_type_idx || (expected.is_ptr() && expected.deref().idx() == ast.byte_type_idx) { if got.is_ptr() || got.is_pointer() { return true } } // allow direct int-literal assignment for pointers for now // maybe in the future optionals should be used for that if expected.is_real_pointer() { if got == ast.int_literal_type { return true } } if got_idx == ast.voidptr_type_idx || got_idx == ast.byteptr_type_idx || (got_idx == ast.byte_type_idx && got.is_ptr()) { if expected.is_ptr() || expected.is_pointer() { return true } } if expected == ast.charptr_type && got == ast.char_type.ref() { return true } if expected.has_flag(.optional) || expected.has_flag(.result) { sym := c.table.sym(got) if ((sym.idx == ast.error_type_idx || got in [ast.none_type, ast.error_type]) && expected.has_flag(.optional)) || ((sym.idx == ast.error_type_idx || got == ast.error_type) && expected.has_flag(.result)) { // IErorr return true } else if !c.check_basic(got, expected.clear_flag(.optional).clear_flag(.result)) { return false } } if !c.check_basic(got, expected) { // TODO: this should go away... return false } if got.is_number() && expected.is_number() { if got == ast.rune_type && expected == ast.byte_type { return true } else if expected == ast.rune_type && got == ast.byte_type { return true } if c.promote_num(expected, got) != expected { // println('could not promote ${c.table.sym(got).name} to ${c.table.sym(expected).name}') return false } } if expected.has_flag(.generic) { return false } return true } pub fn (mut c Checker) check_expected_call_arg(got ast.Type, expected_ ast.Type, language ast.Language, arg ast.CallArg) ? { if got == 0 { return error('unexpected 0 type') } mut expected := expected_ // variadic if expected.has_flag(.variadic) { exp_type_sym := c.table.sym(expected_) exp_info := exp_type_sym.info as ast.Array expected = exp_info.elem_type } if language == .c { // allow number types to be used interchangeably if got.is_number() && expected.is_number() { return } // allow bool & int to be used interchangeably for C functions if (got.idx() == ast.bool_type_idx && expected.idx() in [ast.int_type_idx, ast.int_literal_type_idx]) || (expected.idx() == ast.bool_type_idx && got.idx() in [ast.int_type_idx, ast.int_literal_type_idx]) { return } exp_sym := c.table.sym(expected) // unknown C types are set to int, allow int to be used for types like `&C.FILE` // eg. `C.fflush(C.stderr)` - error: cannot use `int` as `&C.FILE` in argument 1 to `C.fflush` if expected.is_ptr() && exp_sym.language == .c && exp_sym.kind in [.placeholder, .struct_] && got == ast.int_type_idx { return } } idx_got := got.idx() idx_expected := expected.idx() if idx_got in [ast.byteptr_type_idx, ast.charptr_type_idx] || idx_expected in [ast.byteptr_type_idx, ast.charptr_type_idx] { igot := int(got) iexpected := int(expected) // TODO: remove; transitional compatibility for byteptr === &byte if (igot == ast.byteptr_type_idx && iexpected == 65545) || (iexpected == ast.byteptr_type_idx && igot == 65545) { return } // TODO: remove; transitional compatibility for charptr === &char if (igot == ast.charptr_type_idx && iexpected == 65551) || (iexpected == ast.charptr_type_idx && igot == 65551) { return } muls_got := got.nr_muls() muls_expected := expected.nr_muls() if idx_got == ast.byteptr_type_idx && idx_expected == ast.byte_type_idx && muls_got + 1 == muls_expected { return } if idx_expected == ast.byteptr_type_idx && idx_got == ast.byte_type_idx && muls_expected + 1 == muls_got { return } if idx_got == ast.charptr_type_idx && idx_expected == ast.char_type_idx && muls_got + 1 == muls_expected { return } if idx_expected == ast.charptr_type_idx && idx_got == ast.char_type_idx && muls_expected + 1 == muls_got { return } } got_typ_sym := c.table.sym(got) got_typ_str := c.table.type_to_str(got.clear_flag(.variadic)) expected_typ_sym := c.table.sym(expected_) expected_typ_str := c.table.type_to_str(expected.clear_flag(.variadic)) if c.check_types(got, expected) { if language != .v || expected.is_ptr() == got.is_ptr() || arg.is_mut || arg.expr.is_auto_deref_var() || got.has_flag(.shared_f) || c.table.sym(expected_).kind !in [.array, .map] { return } } else { // Check on Generics types, there are some case where we have the following case // `&Type == &Type<>`. This is a common case we are implementing a function // with generic parameters like `compare(bst Bst node) {}` if got_typ_sym.symbol_name_except_generic() == expected_typ_sym.symbol_name_except_generic() { // Check if we are making a comparison between two different types of // the same type like `Type and &Type<>` if (got.is_ptr() != expected.is_ptr()) || !c.check_same_module(got, expected) { return error('cannot use `$got_typ_str` as `$expected_typ_str`') } return } if got == ast.void_type { return error('`$arg.expr` (no value) used as value') } return error('cannot use `$got_typ_str` as `$expected_typ_str`') } if got != ast.void_type { return error('cannot use `$got_typ_str` as `$expected_typ_str`') } } // helper method to check if the type is of the same module. // FIXME(vincenzopalazzo) This is a work around to the issue // explained in the https://github.com/vlang/v/pull/13718#issuecomment-1074517800 fn (c Checker) check_same_module(got ast.Type, expected ast.Type) bool { clean_got_typ := c.table.clean_generics_type_str(got.clear_flag(.variadic)).all_before('<') clean_expected_typ := c.table.clean_generics_type_str(expected.clear_flag(.variadic)).all_before('<') if clean_got_typ == clean_expected_typ { return true // The following if confition should catch the bugs descripted in the issue } else if clean_expected_typ.all_after('.') == clean_got_typ.all_after('.') { return true } return false } pub fn (mut c Checker) check_basic(got ast.Type, expected ast.Type) bool { unalias_got, unalias_expected := c.table.unalias_num_type(got), c.table.unalias_num_type(expected) if unalias_got.idx() == unalias_expected.idx() { // this is returning true even if one type is a ptr // and the other is not, is this correct behaviour? return true } if (unalias_expected.is_pointer() || unalias_expected.is_number()) && (unalias_got.is_pointer() || unalias_got.is_number()) { return true } // allow pointers to be initialized with 0. TODO: use none instead if expected.is_ptr() && unalias_got == ast.int_literal_type { return true } // TODO: use sym so it can be absorbed into below [.voidptr, .any] logic if expected.idx() == ast.array_type_idx || got.idx() == ast.array_type_idx { return true } got_sym, exp_sym := c.table.sym(got), c.table.sym(expected) // multi return if exp_sym.kind == .multi_return && got_sym.kind == .multi_return { exp_types := exp_sym.mr_info().types got_types := got_sym.mr_info().types.map(ast.mktyp(it)) if exp_types.len != got_types.len { return false } for i in 0 .. exp_types.len { if !c.check_types(got_types[i], exp_types[i]) { return false } } return true } // array/map as argument if got_sym.kind in [.array, .map, .array_fixed] && exp_sym.kind == got_sym.kind { if c.table.type_to_str(got) == c.table.type_to_str(expected).trim('&') { return true } } if !unalias_got.is_ptr() && got_sym.kind == .array_fixed && (unalias_expected.is_pointer() || unalias_expected.is_ptr()) { // fixed array needs to be a struct, not a pointer return false } if exp_sym.kind in [.voidptr, .any] || got_sym.kind in [.voidptr, .any] { return true } // sum type if c.table.sumtype_has_variant(expected, ast.mktyp(got), false) { return true } // type alias if (got_sym.kind == .alias && got_sym.parent_idx == expected.idx()) || (exp_sym.kind == .alias && exp_sym.parent_idx == got.idx()) { return true } // fn type if got_sym.kind == .function && exp_sym.kind == .function { return c.check_matching_function_symbols(got_sym, exp_sym) } // allow `return 0` in a function with `?int` return type expected_nonflagged := expected.clear_flags() if got == ast.int_literal_type && expected_nonflagged.is_int() { return true } // allow `return 0` in a function with `?f32` return type if got == ast.float_literal_type && expected_nonflagged.is_float() { return true } return false } pub fn (mut c Checker) check_matching_function_symbols(got_type_sym &ast.TypeSymbol, exp_type_sym &ast.TypeSymbol) bool { got_info := got_type_sym.info as ast.FnType exp_info := exp_type_sym.info as ast.FnType got_fn := got_info.func exp_fn := exp_info.func // we are using check() to compare return type & args as they might include // functions themselves. TODO: optimize, only use check() when needed if got_fn.params.len != exp_fn.params.len { return false } if got_fn.return_type.has_flag(.optional) != exp_fn.return_type.has_flag(.optional) { return false } if !c.check_basic(got_fn.return_type, exp_fn.return_type) { return false } for i, got_arg in got_fn.params { exp_arg := exp_fn.params[i] exp_arg_is_ptr := exp_arg.typ.is_ptr() || exp_arg.typ.is_pointer() got_arg_is_ptr := got_arg.typ.is_ptr() || got_arg.typ.is_pointer() if exp_arg_is_ptr != got_arg_is_ptr { exp_arg_pointedness := if exp_arg_is_ptr { 'a pointer' } else { 'NOT a pointer' } got_arg_pointedness := if got_arg_is_ptr { 'a pointer' } else { 'NOT a pointer' } c.add_error_detail('`$exp_fn.name`\'s expected fn argument: `$exp_arg.name` is $exp_arg_pointedness, but the passed fn argument: `$got_arg.name` is $got_arg_pointedness') return false } else if exp_arg_is_ptr && got_arg_is_ptr { continue } if got_arg.typ != exp_arg.typ { return false } } return true } fn (mut c Checker) check_shift(mut node ast.InfixExpr, left_type ast.Type, right_type ast.Type) ast.Type { if !left_type.is_int() { left_sym := c.table.sym(left_type) // maybe it's an int alias? TODO move this to is_int() ? if left_sym.kind == .alias && (left_sym.info as ast.Alias).parent_type.is_int() { return left_type } if c.pref.translated && left_type == ast.bool_type { // allow `bool << 2` in translated C code return ast.int_type } c.error('invalid operation: shift on type `$left_sym.name`', node.left.pos()) return ast.void_type } if !right_type.is_int() && !c.pref.translated { left_sym := c.table.sym(left_type) right_sym := c.table.sym(right_type) c.error('cannot shift non-integer type `$right_sym.name` into type `$left_sym.name`', node.right.pos()) return ast.void_type } // At this point, it is guaranteed that we have a `number1 << number2`, or `number1 >> number2`, or `number1 >>> number2`: if !node.ct_left_value_evaled { if lval := c.eval_comptime_const_expr(node.left, 0) { node.ct_left_value_evaled = true node.ct_left_value = lval } } if !node.ct_right_value_evaled { if rval := c.eval_comptime_const_expr(node.right, 0) { node.ct_right_value_evaled = true node.ct_right_value = rval } } // if node.ct_left_value_evaled && node.ct_right_value_evaled { // c.note('>>> node.ct_left_value: $node.ct_left_value | node.ct_right_value: $node.ct_right_value', node.pos) // } match node.op { .left_shift, .right_shift, .unsigned_right_shift { // The following code tries to disallow C UBs and IDs at the V level. // From the C++ standart (see https://pvs-studio.com/en/docs/warnings/v610/): // 1. The type of the result is that of the promoted left operand. // The behavior is undefined (UB), if the right operand is negative, // or greater than or equal to the length in bits of the promoted left operand. // 2. The value of E1 << E2 is E1 left-shifted E2 bit positions; // vacated bits are zero-filled. If E1 has an unsigned type, // the value of the result is E1 * 2^E2, reduced modulo one more // than the maximum value representable in the result type. // Otherwise, if E1 has a signed type and non-negative value, // and E1*2^E2 is representable in the result type, then that is // the resulting value; otherwise, the behavior is undefined (UB). // 3. The value of E1 >> E2 is E1 right-shifted E2 bit positions. // If E1 has an unsigned type, or if E1 has a signed type and a // non-negative value, the value of the result is the integral // part of the quotient of E1/2^E2. If E1 has a signed type and // a negative value, the resulting value is implementation-defined (ID). left_sym_final := c.table.final_sym(left_type) left_type_final := ast.Type(left_sym_final.idx) if node.op == .left_shift && left_type_final.is_signed() && !(c.inside_unsafe && c.is_generated) { c.note('shifting a value from a signed type `$left_sym_final.name` can change the sign', node.left.pos()) } if node.ct_right_value_evaled { if node.ct_right_value !is ast.EmptyExpr { ival := node.ct_right_value.i64() or { -999 } if ival < 0 { c.error('invalid negative shift count', node.right.pos()) return left_type } moffset := match left_type_final { ast.char_type { 7 } ast.i8_type { 7 } ast.i16_type { 15 } ast.int_type { 31 } ast.i64_type { 63 } // ast.byte_type { 7 } // ast.u8_type { 7 } ast.u16_type { 15 } ast.u32_type { 31 } ast.u64_type { 63 } else { 64 } } if ival > moffset && !c.pref.translated && !c.file.is_translated { c.error('shift count for type `$left_sym_final.name` too large (maximum: $moffset bits)', node.right.pos()) return left_type } if node.ct_left_value_evaled { if lval := node.ct_left_value.i64() { if lval < 0 { c.error('invalid bitshift of a negative number', node.left.pos()) return left_type } } } } else { // c.note('can not evaluate "$node.right" at comptime, err: $err', node.pos) return left_type } } } else { c.error('unknown shift operator: $node.op', node.pos) return left_type } } return left_type } pub fn (mut c Checker) promote(left_type ast.Type, right_type ast.Type) ast.Type { if left_type.is_any_kind_of_pointer() { if right_type.is_int() || c.pref.translated { return left_type } else { return ast.void_type } } else if right_type.is_any_kind_of_pointer() { if left_type.is_int() || c.pref.translated { return right_type } else { return ast.void_type } } if left_type == right_type { return left_type // strings, self defined operators } if right_type.is_number() && left_type.is_number() { return c.promote_num(left_type, right_type) } else if left_type.has_flag(.optional) != right_type.has_flag(.optional) { // incompatible return ast.void_type } else { return left_type // default to left if not automatic promotion possible } } fn (c &Checker) promote_num(left_type ast.Type, right_type ast.Type) ast.Type { // sort the operands to save time mut type_hi := left_type mut type_lo := right_type if type_hi.idx() < type_lo.idx() { type_hi, type_lo = type_lo, type_hi } idx_hi := type_hi.idx() idx_lo := type_lo.idx() // the following comparisons rely on the order of the indices in table/types.v if idx_hi == ast.int_literal_type_idx { return type_lo } else if idx_hi == ast.float_literal_type_idx { if idx_lo in ast.float_type_idxs { return type_lo } else { return ast.void_type } } else if type_hi.is_float() { if idx_hi == ast.f32_type_idx { if idx_lo in [ast.i64_type_idx, ast.u64_type_idx] { return ast.void_type } else { return type_hi } } else { // f64, float_literal return type_hi } } else if idx_lo >= ast.byte_type_idx { // both operands are unsigned return type_hi } else if idx_lo >= ast.i8_type_idx && (idx_hi <= ast.isize_type_idx || idx_hi == ast.rune_type_idx) { // both signed return if idx_lo == ast.i64_type_idx { type_lo } else { type_hi } } else if idx_hi - idx_lo < (ast.byte_type_idx - ast.i8_type_idx) { return type_lo // conversion unsigned -> signed if signed type is larger } else if c.pref.translated { return type_hi } else { return ast.void_type // conversion signed -> unsigned not allowed } } pub fn (mut c Checker) check_expected(got ast.Type, expected ast.Type) ? { if !c.check_types(got, expected) { return error(c.expected_msg(got, expected)) } } fn (c &Checker) expected_msg(got ast.Type, expected ast.Type) string { exps := c.table.type_to_str(expected) gots := c.table.type_to_str(got) return 'expected `$exps`, not `$gots`' } pub fn (mut c Checker) symmetric_check(left ast.Type, right ast.Type) bool { // allow direct int-literal assignment for pointers for now // maybe in the future optionals should be used for that if right.is_ptr() || right.is_pointer() { if left == ast.int_literal_type { return true } } // allow direct int-literal assignment for pointers for now if left.is_ptr() || left.is_pointer() { if right == ast.int_literal_type { return true } } return c.check_basic(left, right) } pub fn (mut c Checker) infer_fn_generic_types(func ast.Fn, mut node ast.CallExpr) { mut inferred_types := []ast.Type{} for gi, gt_name in func.generic_names { // skip known types if gi < node.concrete_types.len { inferred_types << node.concrete_types[gi] continue } mut typ := ast.void_type for i, param in func.params { mut to_set := ast.void_type // resolve generic struct receiver if node.is_method && param.typ.has_flag(.generic) { sym := c.table.sym(node.receiver_type) match sym.info { ast.Struct, ast.Interface, ast.SumType { if c.table.cur_fn.generic_names.len > 0 { // in generic fn if gt_name in c.table.cur_fn.generic_names && c.table.cur_fn.generic_names.len == c.table.cur_concrete_types.len { idx := c.table.cur_fn.generic_names.index(gt_name) typ = c.table.cur_concrete_types[idx] } } else { // in non-generic fn receiver_generic_names := sym.info.generic_types.map(c.table.sym(it).name) if gt_name in receiver_generic_names && sym.info.generic_types.len == sym.info.concrete_types.len { idx := receiver_generic_names.index(gt_name) typ = sym.info.concrete_types[idx] } } } else {} } } arg_i := if i != 0 && node.is_method { i - 1 } else { i } if node.args.len <= arg_i { break } mut arg := node.args[arg_i] arg.typ = c.unwrap_generic(arg.typ) param_type_sym := c.table.sym(param.typ) if param.typ.has_flag(.generic) && param_type_sym.name == gt_name { to_set = ast.mktyp(arg.typ) sym := c.table.sym(arg.typ) if sym.info is ast.FnType { mut func_ := sym.info.func func_.name = '' idx := c.table.find_or_register_fn_type(c.mod, func_, true, false) to_set = ast.new_type(idx).derive(arg.typ) } if arg.expr.is_auto_deref_var() { to_set = to_set.deref() } // resolve &T &&T ... if param.typ.nr_muls() > 0 && to_set.nr_muls() > 0 { to_set = to_set.set_nr_muls(0) } // If the parent fn param is a generic too if to_set.has_flag(.generic) { to_set = c.unwrap_generic(to_set) } } else if param.typ.has_flag(.generic) { arg_sym := c.table.sym(arg.typ) if param.typ.has_flag(.variadic) { to_set = ast.mktyp(arg.typ) } else if arg_sym.kind == .array && param_type_sym.kind == .array { mut arg_elem_info := arg_sym.info as ast.Array mut param_elem_info := param_type_sym.info as ast.Array mut arg_elem_sym := c.table.sym(arg_elem_info.elem_type) mut param_elem_sym := c.table.sym(param_elem_info.elem_type) for { if arg_elem_sym.kind == .array && param_elem_sym.kind == .array && param_elem_sym.name !in c.table.cur_fn.generic_names { arg_elem_info = arg_elem_sym.info as ast.Array arg_elem_sym = c.table.sym(arg_elem_info.elem_type) param_elem_info = param_elem_sym.info as ast.Array param_elem_sym = c.table.sym(param_elem_info.elem_type) } else { if param_elem_sym.name == gt_name { typ = arg_elem_info.elem_type } break } } } else if arg_sym.kind == .array_fixed && param_type_sym.kind == .array_fixed { mut arg_elem_info := arg_sym.info as ast.ArrayFixed mut param_elem_info := param_type_sym.info as ast.ArrayFixed mut arg_elem_sym := c.table.sym(arg_elem_info.elem_type) mut param_elem_sym := c.table.sym(param_elem_info.elem_type) for { if arg_elem_sym.kind == .array_fixed && param_elem_sym.kind == .array_fixed && param_elem_sym.name !in c.table.cur_fn.generic_names { arg_elem_info = arg_elem_sym.info as ast.ArrayFixed arg_elem_sym = c.table.sym(arg_elem_info.elem_type) param_elem_info = param_elem_sym.info as ast.ArrayFixed param_elem_sym = c.table.sym(param_elem_info.elem_type) } else { if param_elem_sym.name == gt_name { typ = arg_elem_info.elem_type } break } } } else if arg_sym.kind == .map && param_type_sym.kind == .map { arg_map_info := arg_sym.info as ast.Map param_map_info := param_type_sym.info as ast.Map if param_map_info.key_type.has_flag(.generic) && c.table.sym(param_map_info.key_type).name == gt_name { typ = arg_map_info.key_type } if param_map_info.value_type.has_flag(.generic) && c.table.sym(param_map_info.value_type).name == gt_name { typ = arg_map_info.value_type } } else if arg_sym.kind == .function && param_type_sym.kind == .function { arg_type_func := (arg_sym.info as ast.FnType).func param_type_func := (param_type_sym.info as ast.FnType).func if param_type_func.params.len == arg_type_func.params.len { for n, fn_param in param_type_func.params { if fn_param.typ.has_flag(.generic) && c.table.sym(fn_param.typ).name == gt_name { typ = arg_type_func.params[n].typ } } if param_type_func.return_type.has_flag(.generic) && c.table.sym(param_type_func.return_type).name == gt_name { typ = arg_type_func.return_type } } } else if arg_sym.kind in [.struct_, .interface_, .sum_type] { mut generic_types := []ast.Type{} mut concrete_types := []ast.Type{} match arg_sym.info { ast.Struct, ast.Interface, ast.SumType { generic_types = arg_sym.info.generic_types concrete_types = arg_sym.info.concrete_types } else {} } generic_names := generic_types.map(c.table.sym(it).name) if gt_name in generic_names && generic_types.len == concrete_types.len { idx := generic_names.index(gt_name) typ = concrete_types[idx] } } } if to_set != ast.void_type { if typ != ast.void_type { // try to promote // only numbers so we don't promote pointers if typ.is_number() && to_set.is_number() { promoted := c.promote_num(typ, to_set) if promoted != ast.void_type { to_set = promoted } } if !c.check_types(typ, to_set) { c.error('inferred generic type `$gt_name` is ambiguous: got `${c.table.sym(to_set).name}`, expected `${c.table.sym(typ).name}`', arg.pos) } } typ = to_set } } if typ == ast.void_type { c.error('could not infer generic type `$gt_name` in call to `$func.name`', node.pos) return } if c.pref.is_verbose { s := c.table.type_to_str(typ) println('inferred `$func.name<$s>`') } inferred_types << typ node.concrete_types << typ } if c.table.register_fn_concrete_types(func.fkey(), inferred_types) { c.need_recheck_generic_fns = true } }