// elf.c:
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

#ifdef HAVE_DL_ITERATE_PHDR
#include <link.h>
#endif

#ifndef S_ISLNK
#ifndef S_IFLNK
#define S_IFLNK 0120000
#endif
#ifndef S_IFMT
#define S_IFMT 0170000
#endif
#define S_ISLNK(m) (((m)&S_IFMT) == S_IFLNK)
#endif

#ifndef __GNUC__
#define __builtin_prefetch(p, r, l)
#define unlikely(x) (x)
#else
#define unlikely(x) __builtin_expect(!!(x), 0)
#endif

#if !defined(HAVE_DECL_STRNLEN) || !HAVE_DECL_STRNLEN

static size_t xstrnlen(const char *s, size_t maxlen) {
  size_t i;

  for (i = 0; i < maxlen; ++i)
    if (s[i] == '\0') break;
  return i;
}

#define strnlen xstrnlen

#endif

#ifndef HAVE_LSTAT

static int xlstat(const char *path ATTRIBUTE_UNUSED,
                  struct stat *st ATTRIBUTE_UNUSED) {
  return -1;
}

#define lstat xlstat

#endif

#ifndef HAVE_READLINK

static ssize_t xreadlink(const char *path ATTRIBUTE_UNUSED,
                         char *buf ATTRIBUTE_UNUSED,
                         size_t bufsz ATTRIBUTE_UNUSED) {
  return -1;
}

#define readlink xreadlink

#endif

#ifndef HAVE_DL_ITERATE_PHDR

#define dl_phdr_info x_dl_phdr_info
#define dl_iterate_phdr x_dl_iterate_phdr

struct dl_phdr_info {
  uintptr_t dlpi_addr;
  const char *dlpi_name;
};

static int dl_iterate_phdr(int (*callback)(struct dl_phdr_info *, size_t,
                                           void *) ATTRIBUTE_UNUSED,
                           void *data ATTRIBUTE_UNUSED) {
  return 0;
}

#endif

#if BACKTRACE_ELF_SIZE != 32 && BACKTRACE_ELF_SIZE != 64
#error "Unknown BACKTRACE_ELF_SIZE"
#endif

#undef EI_NIDENT
#undef EI_MAG0
#undef EI_MAG1
#undef EI_MAG2
#undef EI_MAG3
#undef EI_CLASS
#undef EI_DATA
#undef EI_VERSION
#undef ELF_MAG0
#undef ELF_MAG1
#undef ELF_MAG2
#undef ELF_MAG3
#undef ELFCLASS32
#undef ELFCLASS64
#undef ELFDATA2LSB
#undef ELFDATA2MSB
#undef EV_CURRENT
#undef ET_DYN
#undef EM_PPC64
#undef EF_PPC64_ABI
#undef SHN_LORESERVE
#undef SHN_XINDEX
#undef SHN_UNDEF
#undef SHT_PROGBITS
#undef SHT_SYMTAB
#undef SHT_STRTAB
#undef SHT_DYNSYM
#undef SHF_COMPRESSED
#undef STT_OBJECT
#undef STT_FUNC
#undef NT_GNU_BUILD_ID
#undef ELFCOMPRESS_ZLIB

typedef uint16_t b_elf_half;
typedef uint32_t b_elf_word;
typedef int32_t b_elf_sword;
#if BACKTRACE_ELF_SIZE == 32

typedef uint32_t b_elf_addr;
typedef uint32_t b_elf_off;
typedef uint32_t b_elf_wxword;
#else

typedef uint64_t b_elf_addr;
typedef uint64_t b_elf_off;
typedef uint64_t b_elf_xword;
typedef int64_t b_elf_sxword;
typedef uint64_t b_elf_wxword;
#endif

#define EI_NIDENT 16

typedef struct {
  unsigned char e_ident[EI_NIDENT];
  b_elf_half e_type;
  b_elf_half e_machine;
  b_elf_word e_version;
  b_elf_addr e_entry;
  b_elf_off e_phoff;
  b_elf_off e_shoff;
  b_elf_word e_flags;
  b_elf_half e_ehsize;
  b_elf_half e_phentsize;
  b_elf_half e_phnum;
  b_elf_half e_shentsize;
  b_elf_half e_shnum;
  b_elf_half e_shstrndx;
} b_elf_ehdr;
#define EI_MAG0 0
#define EI_MAG1 1
#define EI_MAG2 2
#define EI_MAG3 3
#define EI_CLASS 4
#define EI_DATA 5
#define EI_VERSION 6

#define ELFMAG0 0x7f
#define ELFMAG1 'E'
#define ELFMAG2 'L'
#define ELFMAG3 'F'

#define ELFCLASS32 1
#define ELFCLASS64 2

#define ELFDATA2LSB 1
#define ELFDATA2MSB 2

#define EV_CURRENT 1

#define ET_DYN 3

#define EM_PPC64 21
#define EF_PPC64_ABI 3

typedef struct {
  b_elf_word sh_name;
  b_elf_word sh_type;
  b_elf_wxword sh_flags;
  b_elf_addr sh_addr;
  b_elf_off sh_offset;
  b_elf_wxword sh_size;
  b_elf_word sh_link;
  b_elf_word sh_info;
  b_elf_wxword sh_addralign;
  b_elf_wxword sh_entsize;
} b_elf_shdr;
#define SHN_UNDEF 0x0000
#define SHN_LORESERVE 0xFF00
#define SHN_XINDEX 0xFFFF
#define SHT_PROGBITS 1
#define SHT_SYMTAB 2
#define SHT_STRTAB 3
#define SHT_DYNSYM 11

#define SHF_COMPRESSED 0x800

#if BACKTRACE_ELF_SIZE == 32

typedef struct {
  b_elf_word st_name;
  b_elf_addr st_value;
  b_elf_word st_size;
  unsigned char st_info;
  unsigned char st_other;
  b_elf_half st_shndx;
} b_elf_sym;
#else
typedef struct {
  b_elf_word st_name;
  unsigned char st_info;
  unsigned char st_other;
  b_elf_half st_shndx;
  b_elf_addr st_value;
  b_elf_xword st_size;
} b_elf_sym;
#endif
#define STT_OBJECT 1
#define STT_FUNC 2

typedef struct {
  uint32_t namesz;
  uint32_t descsz;
  uint32_t type;
  char name[1];
} b_elf_note;

#define NT_GNU_BUILD_ID 3

#if BACKTRACE_ELF_SIZE == 32

typedef struct {
  b_elf_word ch_type;
  b_elf_word ch_size;
  b_elf_word ch_addralign;
} b_elf_chdr;
#else
typedef struct {
  b_elf_word ch_type;
  b_elf_word ch_reserved;
  b_elf_xword ch_size;
  b_elf_xword ch_addralign;
} b_elf_chdr;
#endif
#define ELFCOMPRESS_ZLIB 1

static const char *const dwarf_section_names[DEBUG_MAX] = {
    ".debug_info",        ".debug_line",     ".debug_abbrev",
    ".debug_ranges",      ".debug_str",      ".debug_addr",
    ".debug_str_offsets", ".debug_line_str", ".debug_rnglists"};

struct debug_section_info {
  off_t offset;

  size_t size;

  const unsigned char *data;

  int compressed;
};

struct elf_symbol {
  const char *name;

  uintptr_t address;

  size_t size;
};

struct elf_syminfo_data {
  struct elf_syminfo_data *next;

  struct elf_symbol *symbols;

  size_t count;
};

struct elf_view {
  struct backtrace_view view;
  int release;
};

struct elf_ppc64_opd_data {
  b_elf_addr addr;

  const char *data;

  size_t size;

  struct elf_view view;
};

static int elf_get_view(struct backtrace_state *state, int descriptor,
                        const unsigned char *memory, size_t memory_size,
                        off_t offset, uint64_t size,
                        backtrace_error_callback error_callback, void *data,
                        struct elf_view *view) {
  if (memory == NULL) {
    view->release = 1;
    return backtrace_get_view(state, descriptor, offset, size, error_callback,
                              data, &view->view);
  } else {
    if ((uint64_t)offset + size > (uint64_t)memory_size) {
      error_callback(data, "out of range for in-memory file", 0);
      return 0;
    }
    view->view.data = (const void *)(memory + offset);
    view->view.base = NULL;
    view->view.len = size;
    view->release = 0;
    return 1;
  }
}

static void elf_release_view(struct backtrace_state *state,
                             struct elf_view *view,
                             backtrace_error_callback error_callback,
                             void *data) {
  if (view->release)
    backtrace_release_view(state, &view->view, error_callback, data);
}

static uint32_t elf_crc32(uint32_t crc, const unsigned char *buf, size_t len) {
  static const uint32_t crc32_table[256] = {
      0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
      0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
      0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
      0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
      0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
      0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
      0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
      0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
      0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
      0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
      0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
      0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
      0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
      0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
      0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
      0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
      0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
      0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
      0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
      0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
      0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
      0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
      0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
      0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
      0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
      0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
      0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
      0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
      0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
      0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
      0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
      0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
      0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
      0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
      0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
      0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
      0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
      0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
      0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
      0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
      0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
      0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
      0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d};
  const unsigned char *end;

  crc = ~crc;
  for (end = buf + len; buf < end; ++buf)
    crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
  return ~crc;
}

static uint32_t elf_crc32_file(struct backtrace_state *state, int descriptor,
                               backtrace_error_callback error_callback,
                               void *data) {
  struct stat st;
  struct backtrace_view file_view;
  uint32_t ret;

  if (fstat(descriptor, &st) < 0) {
    error_callback(data, "fstat", errno);
    return 0;
  }

  if (!backtrace_get_view(state, descriptor, 0, st.st_size, error_callback,
                          data, &file_view))
    return 0;

  ret = elf_crc32(0, (const unsigned char *)file_view.data, st.st_size);

  backtrace_release_view(state, &file_view, error_callback, data);

  return ret;
}

static void elf_nosyms(struct backtrace_state *state ATTRIBUTE_UNUSED,
                       uintptr_t addr ATTRIBUTE_UNUSED,
                       backtrace_syminfo_callback callback ATTRIBUTE_UNUSED,
                       backtrace_error_callback error_callback, void *data) {
  error_callback(data, "no symbol table in ELF executable", -1);
}

static int elf_nodebug(struct backtrace_state *state, uintptr_t pc,
                       backtrace_full_callback callback,
                       backtrace_error_callback error_callback, void *data) {
  if (state->syminfo_fn != NULL && state->syminfo_fn != elf_nosyms) {
    struct backtrace_call_full bdata;

    bdata.full_callback = callback;
    bdata.full_error_callback = error_callback;
    bdata.full_data = data;
    bdata.ret = 0;
    state->syminfo_fn(state, pc, backtrace_syminfo_to_full_callback,
                      backtrace_syminfo_to_full_error_callback, &bdata);
    return bdata.ret;
  }

  error_callback(data, "no debug info in ELF executable", -1);
  return 0;
}

static int elf_symbol_compare(const void *v1, const void *v2) {
  const struct elf_symbol *e1 = (const struct elf_symbol *)v1;
  const struct elf_symbol *e2 = (const struct elf_symbol *)v2;

  if (e1->address < e2->address)
    return -1;
  else if (e1->address > e2->address)
    return 1;
  else
    return 0;
}

static int elf_symbol_search(const void *vkey, const void *ventry) {
  const uintptr_t *key = (const uintptr_t *)vkey;
  const struct elf_symbol *entry = (const struct elf_symbol *)ventry;
  uintptr_t addr;

  addr = *key;
  if (addr < entry->address)
    return -1;
  else if (addr >= entry->address + entry->size)
    return 1;
  else
    return 0;
}

static int elf_initialize_syminfo(
    struct backtrace_state *state, uintptr_t base_address,
    const unsigned char *symtab_data, size_t symtab_size,
    const unsigned char *strtab, size_t strtab_size,
    backtrace_error_callback error_callback, void *data,
    struct elf_syminfo_data *sdata, struct elf_ppc64_opd_data *opd) {
  size_t sym_count;
  const b_elf_sym *sym;
  size_t elf_symbol_count;
  size_t elf_symbol_size;
  struct elf_symbol *elf_symbols;
  size_t i;
  unsigned int j;

  sym_count = symtab_size / sizeof(b_elf_sym);

  sym = (const b_elf_sym *)symtab_data;
  elf_symbol_count = 0;
  for (i = 0; i < sym_count; ++i, ++sym) {
    int info;

    info = sym->st_info & 0xf;
    if ((info == STT_FUNC || info == STT_OBJECT) && sym->st_shndx != SHN_UNDEF)
      ++elf_symbol_count;
  }

  elf_symbol_size = elf_symbol_count * sizeof(struct elf_symbol);
  elf_symbols = ((struct elf_symbol *)backtrace_alloc(state, elf_symbol_size,
                                                      error_callback, data));
  if (elf_symbols == NULL) return 0;

  sym = (const b_elf_sym *)symtab_data;
  j = 0;
  for (i = 0; i < sym_count; ++i, ++sym) {
    int info;

    info = sym->st_info & 0xf;
    if (info != STT_FUNC && info != STT_OBJECT) continue;
    if (sym->st_shndx == SHN_UNDEF) continue;
    if (sym->st_name >= strtab_size) {
      error_callback(data, "symbol string index out of range", 0);
      backtrace_free(state, elf_symbols, elf_symbol_size, error_callback, data);
      return 0;
    }
    elf_symbols[j].name = (const char *)strtab + sym->st_name;

    if (opd && sym->st_value >= opd->addr &&
        sym->st_value < opd->addr + opd->size)
      elf_symbols[j].address =
          *(const b_elf_addr *)(opd->data + (sym->st_value - opd->addr));
    else
      elf_symbols[j].address = sym->st_value;
    elf_symbols[j].address += base_address;
    elf_symbols[j].size = sym->st_size;
    ++j;
  }

  backtrace_qsort(elf_symbols, elf_symbol_count, sizeof(struct elf_symbol),
                  elf_symbol_compare);

  sdata->next = NULL;
  sdata->symbols = elf_symbols;
  sdata->count = elf_symbol_count;

  return 1;
}

static void elf_add_syminfo_data(struct backtrace_state *state,
                                 struct elf_syminfo_data *edata) {
  if (!state->threaded) {
    struct elf_syminfo_data **pp;

    for (pp = (struct elf_syminfo_data **)(void *)&state->syminfo_data;
         *pp != NULL; pp = &(*pp)->next)
      ;
    *pp = edata;
  } else {
    while (1) {
      struct elf_syminfo_data **pp;

      pp = (struct elf_syminfo_data **)(void *)&state->syminfo_data;

      while (1) {
        struct elf_syminfo_data *p;

        p = backtrace_atomic_load_pointer(pp);

        if (p == NULL) break;

        pp = &p->next;
      }

      if (__sync_bool_compare_and_swap(pp, NULL, edata)) break;
    }
  }
}

static void elf_syminfo(
    struct backtrace_state *state, uintptr_t addr,
    backtrace_syminfo_callback callback,
    backtrace_error_callback error_callback ATTRIBUTE_UNUSED, void *data) {
  struct elf_syminfo_data *edata;
  struct elf_symbol *sym = NULL;

  if (!state->threaded) {
    for (edata = (struct elf_syminfo_data *)state->syminfo_data; edata != NULL;
         edata = edata->next) {
      sym = ((struct elf_symbol *)bsearch(&addr, edata->symbols, edata->count,
                                          sizeof(struct elf_symbol),
                                          elf_symbol_search));
      if (sym != NULL) break;
    }
  } else {
    struct elf_syminfo_data **pp;

    pp = (struct elf_syminfo_data **)(void *)&state->syminfo_data;
    while (1) {
      edata = backtrace_atomic_load_pointer(pp);
      if (edata == NULL) break;

      sym = ((struct elf_symbol *)bsearch(&addr, edata->symbols, edata->count,
                                          sizeof(struct elf_symbol),
                                          elf_symbol_search));
      if (sym != NULL) break;

      pp = &edata->next;
    }
  }

  if (sym == NULL)
    callback(data, addr, NULL, 0, 0);
  else
    callback(data, addr, sym->name, sym->address, sym->size);
}

static int elf_is_symlink(const char *filename) {
  struct stat st;

  if (lstat(filename, &st) < 0) return 0;
  return S_ISLNK(st.st_mode);
}

static char *elf_readlink(struct backtrace_state *state, const char *filename,
                          backtrace_error_callback error_callback, void *data,
                          size_t *plen) {
  size_t len;
  char *buf;

  len = 128;
  while (1) {
    ssize_t rl;

    buf = backtrace_alloc(state, len, error_callback, data);
    if (buf == NULL) return NULL;
    rl = readlink(filename, buf, len);
    if (rl < 0) {
      backtrace_free(state, buf, len, error_callback, data);
      return NULL;
    }
    if ((size_t)rl < len - 1) {
      buf[rl] = '\0';
      *plen = len;
      return buf;
    }
    backtrace_free(state, buf, len, error_callback, data);
    len *= 2;
  }
}

#define SYSTEM_BUILD_ID_DIR "/usr/lib/debug/.build-id/"

static int elf_open_debugfile_by_buildid(
    struct backtrace_state *state, const char *buildid_data,
    size_t buildid_size, backtrace_error_callback error_callback, void *data) {
  const char *const prefix = SYSTEM_BUILD_ID_DIR;
  const size_t prefix_len = strlen(prefix);
  const char *const suffix = ".debug";
  const size_t suffix_len = strlen(suffix);
  size_t len;
  char *bd_filename;
  char *t;
  size_t i;
  int ret;
  int does_not_exist;

  len = prefix_len + buildid_size * 2 + suffix_len + 2;
  bd_filename = backtrace_alloc(state, len, error_callback, data);
  if (bd_filename == NULL) return -1;

  t = bd_filename;
  memcpy(t, prefix, prefix_len);
  t += prefix_len;
  for (i = 0; i < buildid_size; i++) {
    unsigned char b;
    unsigned char nib;

    b = (unsigned char)buildid_data[i];
    nib = (b & 0xf0) >> 4;
    *t++ = nib < 10 ? '0' + nib : 'a' + nib - 10;
    nib = b & 0x0f;
    *t++ = nib < 10 ? '0' + nib : 'a' + nib - 10;
    if (i == 0) *t++ = '/';
  }
  memcpy(t, suffix, suffix_len);
  t[suffix_len] = '\0';

  ret = backtrace_open(bd_filename, error_callback, data, &does_not_exist);

  backtrace_free(state, bd_filename, len, error_callback, data);

  return ret;
}

static int elf_try_debugfile(struct backtrace_state *state, const char *prefix,
                             size_t prefix_len, const char *prefix2,
                             size_t prefix2_len, const char *debuglink_name,
                             backtrace_error_callback error_callback,
                             void *data) {
  size_t debuglink_len;
  size_t try_len;
  char *try;
  int does_not_exist;
  int ret;

  debuglink_len = strlen(debuglink_name);
  try_len = prefix_len + prefix2_len + debuglink_len + 1;
  try = backtrace_alloc(state, try_len, error_callback, data);
  if (try == NULL) return -1;

  memcpy(try, prefix, prefix_len);
  memcpy(try + prefix_len, prefix2, prefix2_len);
  memcpy(try + prefix_len + prefix2_len, debuglink_name, debuglink_len);
  try[prefix_len + prefix2_len + debuglink_len] = '\0';

  ret = backtrace_open(try, error_callback, data, &does_not_exist);

  backtrace_free(state, try, try_len, error_callback, data);

  return ret;
}

static int elf_find_debugfile_by_debuglink(
    struct backtrace_state *state, const char *filename,
    const char *debuglink_name, backtrace_error_callback error_callback,
    void *data) {
  int ret;
  char *alc;
  size_t alc_len;
  const char *slash;
  int ddescriptor;
  const char *prefix;
  size_t prefix_len;

  ret = -1;
  alc = NULL;
  alc_len = 0;
  while (elf_is_symlink(filename)) {
    char *new_buf;
    size_t new_len;

    new_buf = elf_readlink(state, filename, error_callback, data, &new_len);
    if (new_buf == NULL) break;

    if (new_buf[0] == '/')
      filename = new_buf;
    else {
      slash = strrchr(filename, '/');
      if (slash == NULL)
        filename = new_buf;
      else {
        size_t clen;
        char *c;

        slash++;
        clen = slash - filename + strlen(new_buf) + 1;
        c = backtrace_alloc(state, clen, error_callback, data);
        if (c == NULL) goto done;

        memcpy(c, filename, slash - filename);
        memcpy(c + (slash - filename), new_buf, strlen(new_buf));
        c[slash - filename + strlen(new_buf)] = '\0';
        backtrace_free(state, new_buf, new_len, error_callback, data);
        filename = c;
        new_buf = c;
        new_len = clen;
      }
    }

    if (alc != NULL) backtrace_free(state, alc, alc_len, error_callback, data);
    alc = new_buf;
    alc_len = new_len;
  }

  slash = strrchr(filename, '/');
  if (slash == NULL) {
    prefix = "";
    prefix_len = 0;
  } else {
    slash++;
    prefix = filename;
    prefix_len = slash - filename;
  }

  ddescriptor = elf_try_debugfile(state, prefix, prefix_len, "", 0,
                                  debuglink_name, error_callback, data);
  if (ddescriptor >= 0) {
    ret = ddescriptor;
    goto done;
  }

  ddescriptor =
      elf_try_debugfile(state, prefix, prefix_len, ".debug/", strlen(".debug/"),
                        debuglink_name, error_callback, data);
  if (ddescriptor >= 0) {
    ret = ddescriptor;
    goto done;
  }

  ddescriptor = elf_try_debugfile(state, "/usr/lib/debug/",
                                  strlen("/usr/lib/debug/"), prefix, prefix_len,
                                  debuglink_name, error_callback, data);
  if (ddescriptor >= 0) ret = ddescriptor;

done:
  if (alc != NULL && alc_len > 0)
    backtrace_free(state, alc, alc_len, error_callback, data);
  return ret;
}

static int elf_open_debugfile_by_debuglink(
    struct backtrace_state *state, const char *filename,
    const char *debuglink_name, uint32_t debuglink_crc,
    backtrace_error_callback error_callback, void *data) {
  int ddescriptor;

  ddescriptor = elf_find_debugfile_by_debuglink(state, filename, debuglink_name,
                                                error_callback, data);
  if (ddescriptor < 0) return -1;

  if (debuglink_crc != 0) {
    uint32_t got_crc;

    got_crc = elf_crc32_file(state, ddescriptor, error_callback, data);
    if (got_crc != debuglink_crc) {
      backtrace_close(ddescriptor, error_callback, data);
      return -1;
    }
  }

  return ddescriptor;
}

static void elf_uncompress_failed(void) {}

static int elf_zlib_fetch(const unsigned char **ppin,
                          const unsigned char *pinend, uint64_t *pval,
                          unsigned int *pbits) {
  unsigned int bits;
  const unsigned char *pin;
  uint64_t val;
  uint32_t next;

  bits = *pbits;
  if (bits >= 15) return 1;
  pin = *ppin;
  val = *pval;

  if (unlikely(pinend - pin < 4)) {
    elf_uncompress_failed();
    return 0;
  }

#if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
    defined(__ORDER_BIG_ENDIAN__) &&                               \
    (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ||                     \
     __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)

  next = *(const uint32_t *)pin;

#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
  next = __builtin_bswap32(next);
#endif
#else
  next = pin[0] | (pin[1] << 8) | (pin[2] << 16) | (pin[3] << 24);
#endif

  val |= (uint64_t)next << bits;
  bits += 32;
  pin += 4;

  __builtin_prefetch(pin, 0, 0);

  *ppin = pin;
  *pval = val;
  *pbits = bits;
  return 1;
}

#define HUFFMAN_TABLE_SIZE (1024)

#define HUFFMAN_VALUE_MASK 0x01ff
#define HUFFMAN_BITS_SHIFT 9
#define HUFFMAN_BITS_MASK 0x7
#define HUFFMAN_SECONDARY_SHIFT 12

#define ZDEBUG_TABLE_SIZE                                                      \
  (2 * HUFFMAN_TABLE_SIZE * sizeof(uint16_t) + (286 + 30) * sizeof(uint16_t) + \
   (286 + 30) * sizeof(unsigned char))

#define ZDEBUG_TABLE_CODELEN_OFFSET \
  (2 * HUFFMAN_TABLE_SIZE * sizeof(uint16_t) + (286 + 30) * sizeof(uint16_t))

#define ZDEBUG_TABLE_WORK_OFFSET (2 * HUFFMAN_TABLE_SIZE * sizeof(uint16_t))

#ifdef BACKTRACE_GENERATE_FIXED_HUFFMAN_TABLE

static size_t final_next_secondary;

#endif

static int elf_zlib_inflate_table(unsigned char *codes, size_t codes_len,
                                  uint16_t *zdebug_table, uint16_t *table) {
  uint16_t count[16];
  uint16_t start[16];
  uint16_t prev[16];
  uint16_t firstcode[7];
  uint16_t *next;
  size_t i;
  size_t j;
  unsigned int code;
  size_t next_secondary;

  next =
      (uint16_t *)(((unsigned char *)zdebug_table) + ZDEBUG_TABLE_WORK_OFFSET);

  memset(&count[0], 0, 16 * sizeof(uint16_t));
  for (i = 0; i < codes_len; ++i) {
    if (unlikely(codes[i] >= 16)) {
      elf_uncompress_failed();
      return 0;
    }

    if (count[codes[i]] == 0) {
      start[codes[i]] = i;
      prev[codes[i]] = i;
    } else {
      next[prev[codes[i]]] = i;
      prev[codes[i]] = i;
    }

    ++count[codes[i]];
  }

  memset(table, 0, HUFFMAN_TABLE_SIZE * sizeof(uint16_t));

  code = 0;
  for (j = 1; j <= 8; ++j) {
    unsigned int jcnt;
    unsigned int val;

    jcnt = count[j];
    if (jcnt == 0) continue;

    if (unlikely(jcnt > (1U << j))) {
      elf_uncompress_failed();
      return 0;
    }

    val = start[j];
    for (i = 0; i < jcnt; ++i) {
      uint16_t tval;
      size_t ind;
      unsigned int incr;

      if (unlikely((val & ~HUFFMAN_VALUE_MASK) != 0)) {
        elf_uncompress_failed();
        return 0;
      }

      tval = val | ((j - 1) << HUFFMAN_BITS_SHIFT);

      for (ind = code; ind < 0x100; ind += 1 << j) {
        if (unlikely(table[ind] != 0)) {
          elf_uncompress_failed();
          return 0;
        }
        table[ind] = tval;
      }

      if (i + 1 < jcnt) val = next[val];

      incr = 1U << (j - 1);
      while ((code & incr) != 0) incr >>= 1;
      if (incr == 0)
        code = 0;
      else {
        code &= incr - 1;
        code += incr;
      }
    }
  }

  for (j = 9; j < 16; j++) {
    unsigned int jcnt;
    unsigned int k;

    jcnt = count[j];
    if (jcnt == 0) continue;

    firstcode[j - 9] = code;

    for (k = 0; k < j; ++k) {
      if ((jcnt & (1U << k)) != 0) {
        unsigned int m;
        unsigned int bit;

        bit = 1U << (j - k - 1);
        for (m = 0; m < j - k; ++m, bit >>= 1) {
          if ((code & bit) == 0) {
            code += bit;
            break;
          }
          code &= ~bit;
        }
        jcnt &= ~(1U << k);
      }
    }
    if (unlikely(jcnt != 0)) {
      elf_uncompress_failed();
      return 0;
    }
  }

  next_secondary = 0;
  for (j = 15; j >= 9; j--) {
    unsigned int jcnt;
    unsigned int val;
    size_t primary;
    size_t secondary;
    size_t secondary_bits;
    jcnt = count[j];
    if (jcnt == 0) continue;

    val = start[j];
    code = firstcode[j - 9];
    primary = 0x100;
    secondary = 0;
    secondary_bits = 0;
    for (i = 0; i < jcnt; ++i) {
      uint16_t tval;
      size_t ind;
      unsigned int incr;

      if ((code & 0xff) != primary) {
        uint16_t tprimary;

        primary = code & 0xff;

        tprimary = table[primary];
        if (tprimary == 0) {
          if (unlikely((next_secondary & HUFFMAN_VALUE_MASK) !=
                       next_secondary)) {
            elf_uncompress_failed();
            return 0;
          }

          secondary = next_secondary;
          secondary_bits = j - 8;
          next_secondary += 1 << secondary_bits;
          table[primary] = (secondary + ((j - 8) << HUFFMAN_BITS_SHIFT) +
                            (1U << HUFFMAN_SECONDARY_SHIFT));
        } else {
          if (unlikely((tprimary & (1U << HUFFMAN_SECONDARY_SHIFT)) == 0)) {
            elf_uncompress_failed();
            return 0;
          }
          secondary = tprimary & HUFFMAN_VALUE_MASK;
          secondary_bits =
              ((tprimary >> HUFFMAN_BITS_SHIFT) & HUFFMAN_BITS_MASK);
          if (unlikely(secondary_bits < j - 8)) {
            elf_uncompress_failed();
            return 0;
          }
        }
      }

      tval = val | ((j - 8) << HUFFMAN_BITS_SHIFT);

      for (ind = code >> 8; ind < (1U << secondary_bits);
           ind += 1U << (j - 8)) {
        if (unlikely(table[secondary + 0x100 + ind] != 0)) {
          elf_uncompress_failed();
          return 0;
        }
        table[secondary + 0x100 + ind] = tval;
      }

      if (i + 1 < jcnt) val = next[val];

      incr = 1U << (j - 1);
      while ((code & incr) != 0) incr >>= 1;
      if (incr == 0)
        code = 0;
      else {
        code &= incr - 1;
        code += incr;
      }
    }
  }

#ifdef BACKTRACE_GENERATE_FIXED_HUFFMAN_TABLE
  final_next_secondary = next_secondary;
#endif

  return 1;
}

static const uint16_t elf_zlib_default_table[0x170] = {
    0xd00, 0xe50,  0xe10, 0xf18,  0xd10, 0xe70,  0xe30, 0x1230, 0xd08, 0xe60,
    0xe20, 0x1210, 0xe00, 0xe80,  0xe40, 0x1250, 0xd04, 0xe58,  0xe18, 0x1200,
    0xd14, 0xe78,  0xe38, 0x1240, 0xd0c, 0xe68,  0xe28, 0x1220, 0xe08, 0xe88,
    0xe48, 0x1260, 0xd02, 0xe54,  0xe14, 0xf1c,  0xd12, 0xe74,  0xe34, 0x1238,
    0xd0a, 0xe64,  0xe24, 0x1218, 0xe04, 0xe84,  0xe44, 0x1258, 0xd06, 0xe5c,
    0xe1c, 0x1208, 0xd16, 0xe7c,  0xe3c, 0x1248, 0xd0e, 0xe6c,  0xe2c, 0x1228,
    0xe0c, 0xe8c,  0xe4c, 0x1268, 0xd01, 0xe52,  0xe12, 0xf1a,  0xd11, 0xe72,
    0xe32, 0x1234, 0xd09, 0xe62,  0xe22, 0x1214, 0xe02, 0xe82,  0xe42, 0x1254,
    0xd05, 0xe5a,  0xe1a, 0x1204, 0xd15, 0xe7a,  0xe3a, 0x1244, 0xd0d, 0xe6a,
    0xe2a, 0x1224, 0xe0a, 0xe8a,  0xe4a, 0x1264, 0xd03, 0xe56,  0xe16, 0xf1e,
    0xd13, 0xe76,  0xe36, 0x123c, 0xd0b, 0xe66,  0xe26, 0x121c, 0xe06, 0xe86,
    0xe46, 0x125c, 0xd07, 0xe5e,  0xe1e, 0x120c, 0xd17, 0xe7e,  0xe3e, 0x124c,
    0xd0f, 0xe6e,  0xe2e, 0x122c, 0xe0e, 0xe8e,  0xe4e, 0x126c, 0xd00, 0xe51,
    0xe11, 0xf19,  0xd10, 0xe71,  0xe31, 0x1232, 0xd08, 0xe61,  0xe21, 0x1212,
    0xe01, 0xe81,  0xe41, 0x1252, 0xd04, 0xe59,  0xe19, 0x1202, 0xd14, 0xe79,
    0xe39, 0x1242, 0xd0c, 0xe69,  0xe29, 0x1222, 0xe09, 0xe89,  0xe49, 0x1262,
    0xd02, 0xe55,  0xe15, 0xf1d,  0xd12, 0xe75,  0xe35, 0x123a, 0xd0a, 0xe65,
    0xe25, 0x121a, 0xe05, 0xe85,  0xe45, 0x125a, 0xd06, 0xe5d,  0xe1d, 0x120a,
    0xd16, 0xe7d,  0xe3d, 0x124a, 0xd0e, 0xe6d,  0xe2d, 0x122a, 0xe0d, 0xe8d,
    0xe4d, 0x126a, 0xd01, 0xe53,  0xe13, 0xf1b,  0xd11, 0xe73,  0xe33, 0x1236,
    0xd09, 0xe63,  0xe23, 0x1216, 0xe03, 0xe83,  0xe43, 0x1256, 0xd05, 0xe5b,
    0xe1b, 0x1206, 0xd15, 0xe7b,  0xe3b, 0x1246, 0xd0d, 0xe6b,  0xe2b, 0x1226,
    0xe0b, 0xe8b,  0xe4b, 0x1266, 0xd03, 0xe57,  0xe17, 0xf1f,  0xd13, 0xe77,
    0xe37, 0x123e, 0xd0b, 0xe67,  0xe27, 0x121e, 0xe07, 0xe87,  0xe47, 0x125e,
    0xd07, 0xe5f,  0xe1f, 0x120e, 0xd17, 0xe7f,  0xe3f, 0x124e, 0xd0f, 0xe6f,
    0xe2f, 0x122e, 0xe0f, 0xe8f,  0xe4f, 0x126e, 0x290, 0x291,  0x292, 0x293,
    0x294, 0x295,  0x296, 0x297,  0x298, 0x299,  0x29a, 0x29b,  0x29c, 0x29d,
    0x29e, 0x29f,  0x2a0, 0x2a1,  0x2a2, 0x2a3,  0x2a4, 0x2a5,  0x2a6, 0x2a7,
    0x2a8, 0x2a9,  0x2aa, 0x2ab,  0x2ac, 0x2ad,  0x2ae, 0x2af,  0x2b0, 0x2b1,
    0x2b2, 0x2b3,  0x2b4, 0x2b5,  0x2b6, 0x2b7,  0x2b8, 0x2b9,  0x2ba, 0x2bb,
    0x2bc, 0x2bd,  0x2be, 0x2bf,  0x2c0, 0x2c1,  0x2c2, 0x2c3,  0x2c4, 0x2c5,
    0x2c6, 0x2c7,  0x2c8, 0x2c9,  0x2ca, 0x2cb,  0x2cc, 0x2cd,  0x2ce, 0x2cf,
    0x2d0, 0x2d1,  0x2d2, 0x2d3,  0x2d4, 0x2d5,  0x2d6, 0x2d7,  0x2d8, 0x2d9,
    0x2da, 0x2db,  0x2dc, 0x2dd,  0x2de, 0x2df,  0x2e0, 0x2e1,  0x2e2, 0x2e3,
    0x2e4, 0x2e5,  0x2e6, 0x2e7,  0x2e8, 0x2e9,  0x2ea, 0x2eb,  0x2ec, 0x2ed,
    0x2ee, 0x2ef,  0x2f0, 0x2f1,  0x2f2, 0x2f3,  0x2f4, 0x2f5,  0x2f6, 0x2f7,
    0x2f8, 0x2f9,  0x2fa, 0x2fb,  0x2fc, 0x2fd,  0x2fe, 0x2ff,
};

static const uint16_t elf_zlib_default_dist_table[0x100] = {
    0x800, 0x810, 0x808, 0x818, 0x804, 0x814, 0x80c, 0x81c, 0x802, 0x812, 0x80a,
    0x81a, 0x806, 0x816, 0x80e, 0x81e, 0x801, 0x811, 0x809, 0x819, 0x805, 0x815,
    0x80d, 0x81d, 0x803, 0x813, 0x80b, 0x81b, 0x807, 0x817, 0x80f, 0x81f, 0x800,
    0x810, 0x808, 0x818, 0x804, 0x814, 0x80c, 0x81c, 0x802, 0x812, 0x80a, 0x81a,
    0x806, 0x816, 0x80e, 0x81e, 0x801, 0x811, 0x809, 0x819, 0x805, 0x815, 0x80d,
    0x81d, 0x803, 0x813, 0x80b, 0x81b, 0x807, 0x817, 0x80f, 0x81f, 0x800, 0x810,
    0x808, 0x818, 0x804, 0x814, 0x80c, 0x81c, 0x802, 0x812, 0x80a, 0x81a, 0x806,
    0x816, 0x80e, 0x81e, 0x801, 0x811, 0x809, 0x819, 0x805, 0x815, 0x80d, 0x81d,
    0x803, 0x813, 0x80b, 0x81b, 0x807, 0x817, 0x80f, 0x81f, 0x800, 0x810, 0x808,
    0x818, 0x804, 0x814, 0x80c, 0x81c, 0x802, 0x812, 0x80a, 0x81a, 0x806, 0x816,
    0x80e, 0x81e, 0x801, 0x811, 0x809, 0x819, 0x805, 0x815, 0x80d, 0x81d, 0x803,
    0x813, 0x80b, 0x81b, 0x807, 0x817, 0x80f, 0x81f, 0x800, 0x810, 0x808, 0x818,
    0x804, 0x814, 0x80c, 0x81c, 0x802, 0x812, 0x80a, 0x81a, 0x806, 0x816, 0x80e,
    0x81e, 0x801, 0x811, 0x809, 0x819, 0x805, 0x815, 0x80d, 0x81d, 0x803, 0x813,
    0x80b, 0x81b, 0x807, 0x817, 0x80f, 0x81f, 0x800, 0x810, 0x808, 0x818, 0x804,
    0x814, 0x80c, 0x81c, 0x802, 0x812, 0x80a, 0x81a, 0x806, 0x816, 0x80e, 0x81e,
    0x801, 0x811, 0x809, 0x819, 0x805, 0x815, 0x80d, 0x81d, 0x803, 0x813, 0x80b,
    0x81b, 0x807, 0x817, 0x80f, 0x81f, 0x800, 0x810, 0x808, 0x818, 0x804, 0x814,
    0x80c, 0x81c, 0x802, 0x812, 0x80a, 0x81a, 0x806, 0x816, 0x80e, 0x81e, 0x801,
    0x811, 0x809, 0x819, 0x805, 0x815, 0x80d, 0x81d, 0x803, 0x813, 0x80b, 0x81b,
    0x807, 0x817, 0x80f, 0x81f, 0x800, 0x810, 0x808, 0x818, 0x804, 0x814, 0x80c,
    0x81c, 0x802, 0x812, 0x80a, 0x81a, 0x806, 0x816, 0x80e, 0x81e, 0x801, 0x811,
    0x809, 0x819, 0x805, 0x815, 0x80d, 0x81d, 0x803, 0x813, 0x80b, 0x81b, 0x807,
    0x817, 0x80f, 0x81f,
};

static int elf_zlib_inflate(const unsigned char *pin, size_t sin,
                            uint16_t *zdebug_table, unsigned char *pout,
                            size_t sout) {
  unsigned char *porigout;
  const unsigned char *pinend;
  unsigned char *poutend;

  porigout = pout;
  pinend = pin + sin;
  poutend = pout + sout;
  while ((pinend - pin) > 4) {
    uint64_t val;
    unsigned int bits;
    int last;

    if (unlikely((pin[0] & 0xf) != 8)) {
      elf_uncompress_failed();
      return 0;
    }
    if (unlikely((pin[0] >> 4) > 7)) {
      elf_uncompress_failed();
      return 0;
    }
    if (unlikely((pin[1] & 0x20) != 0)) {
      elf_uncompress_failed();
      return 0;
    }
    val = (pin[0] << 8) | pin[1];
    if (unlikely(val % 31 != 0)) {
      elf_uncompress_failed();
      return 0;
    }
    pin += 2;

    val = 0;
    bits = 0;
    while ((((uintptr_t)pin) & 3) != 0) {
      val |= (uint64_t)*pin << bits;
      bits += 8;
      ++pin;
    }

    last = 0;

    while (!last) {
      unsigned int type;
      const uint16_t *tlit;
      const uint16_t *tdist;

      if (!elf_zlib_fetch(&pin, pinend, &val, &bits)) return 0;

      last = val & 1;
      type = (val >> 1) & 3;
      val >>= 3;
      bits -= 3;

      if (unlikely(type == 3)) {
        elf_uncompress_failed();
        return 0;
      }

      if (type == 0) {
        uint16_t len;
        uint16_t lenc;

        while (bits >= 8) {
          --pin;
          bits -= 8;
        }

        val = 0;
        bits = 0;
        if (unlikely((pinend - pin) < 4)) {
          elf_uncompress_failed();
          return 0;
        }
        len = pin[0] | (pin[1] << 8);
        lenc = pin[2] | (pin[3] << 8);
        pin += 4;
        lenc = ~lenc;
        if (unlikely(len != lenc)) {
          elf_uncompress_failed();
          return 0;
        }
        if (unlikely(len > (unsigned int)(pinend - pin) ||
                     len > (unsigned int)(poutend - pout))) {
          elf_uncompress_failed();
          return 0;
        }
        memcpy(pout, pin, len);
        pout += len;
        pin += len;

        while ((((uintptr_t)pin) & 3) != 0) {
          val |= (uint64_t)*pin << bits;
          bits += 8;
          ++pin;
        }

        continue;
      }

      if (type == 1) {
        tlit = elf_zlib_default_table;
        tdist = elf_zlib_default_dist_table;
      } else {
        unsigned int nlit;
        unsigned int ndist;
        unsigned int nclen;
        unsigned char codebits[19];
        unsigned char *plenbase;
        unsigned char *plen;
        unsigned char *plenend;

        if (!elf_zlib_fetch(&pin, pinend, &val, &bits)) return 0;

        nlit = (val & 0x1f) + 257;
        val >>= 5;
        ndist = (val & 0x1f) + 1;
        val >>= 5;
        nclen = (val & 0xf) + 4;
        val >>= 4;
        bits -= 14;
        if (unlikely(nlit > 286 || ndist > 30)) {
          elf_uncompress_failed();
          return 0;
        }

        memset(&codebits[0], 0, 19);

        if (!elf_zlib_fetch(&pin, pinend, &val, &bits)) return 0;

        codebits[16] = val & 7;
        codebits[17] = (val >> 3) & 7;
        codebits[18] = (val >> 6) & 7;
        codebits[0] = (val >> 9) & 7;
        val >>= 12;
        bits -= 12;

        if (nclen == 4) goto codebitsdone;

        codebits[8] = val & 7;
        val >>= 3;
        bits -= 3;

        if (nclen == 5) goto codebitsdone;

        if (!elf_zlib_fetch(&pin, pinend, &val, &bits)) return 0;

        codebits[7] = val & 7;
        val >>= 3;
        bits -= 3;

        if (nclen == 6) goto codebitsdone;

        codebits[9] = val & 7;
        val >>= 3;
        bits -= 3;

        if (nclen == 7) goto codebitsdone;

        codebits[6] = val & 7;
        val >>= 3;
        bits -= 3;

        if (nclen == 8) goto codebitsdone;

        codebits[10] = val & 7;
        val >>= 3;
        bits -= 3;

        if (nclen == 9) goto codebitsdone;

        codebits[5] = val & 7;
        val >>= 3;
        bits -= 3;

        if (nclen == 10) goto codebitsdone;

        if (!elf_zlib_fetch(&pin, pinend, &val, &bits)) return 0;

        codebits[11] = val & 7;
        val >>= 3;
        bits -= 3;

        if (nclen == 11) goto codebitsdone;

        codebits[4] = val & 7;
        val >>= 3;
        bits -= 3;

        if (nclen == 12) goto codebitsdone;

        codebits[12] = val & 7;
        val >>= 3;
        bits -= 3;

        if (nclen == 13) goto codebitsdone;

        codebits[3] = val & 7;
        val >>= 3;
        bits -= 3;

        if (nclen == 14) goto codebitsdone;

        codebits[13] = val & 7;
        val >>= 3;
        bits -= 3;

        if (nclen == 15) goto codebitsdone;

        if (!elf_zlib_fetch(&pin, pinend, &val, &bits)) return 0;

        codebits[2] = val & 7;
        val >>= 3;
        bits -= 3;

        if (nclen == 16) goto codebitsdone;

        codebits[14] = val & 7;
        val >>= 3;
        bits -= 3;

        if (nclen == 17) goto codebitsdone;

        codebits[1] = val & 7;
        val >>= 3;
        bits -= 3;

        if (nclen == 18) goto codebitsdone;

        codebits[15] = val & 7;
        val >>= 3;
        bits -= 3;

      codebitsdone:

        if (!elf_zlib_inflate_table(codebits, 19, zdebug_table, zdebug_table))
          return 0;

        plenbase =
            (((unsigned char *)zdebug_table) + ZDEBUG_TABLE_CODELEN_OFFSET);
        plen = plenbase;
        plenend = plen + nlit + ndist;
        while (plen < plenend) {
          uint16_t t;
          unsigned int b;
          uint16_t v;

          if (!elf_zlib_fetch(&pin, pinend, &val, &bits)) return 0;

          t = zdebug_table[val & 0xff];

          if (unlikely((t & (1U << HUFFMAN_SECONDARY_SHIFT)) != 0)) {
            elf_uncompress_failed();
            return 0;
          }

          b = (t >> HUFFMAN_BITS_SHIFT) & HUFFMAN_BITS_MASK;
          val >>= b + 1;
          bits -= b + 1;

          v = t & HUFFMAN_VALUE_MASK;
          if (v < 16)
            *plen++ = v;
          else if (v == 16) {
            unsigned int c;
            unsigned int prev;

            if (unlikely(plen == plenbase)) {
              elf_uncompress_failed();
              return 0;
            }

            c = 3 + (val & 0x3);
            val >>= 2;
            bits -= 2;
            if (unlikely((unsigned int)(plenend - plen) < c)) {
              elf_uncompress_failed();
              return 0;
            }

            prev = plen[-1];
            switch (c) {
              case 6:
                *plen++ = prev;
                ATTRIBUTE_FALLTHROUGH;
              case 5:
                *plen++ = prev;
                ATTRIBUTE_FALLTHROUGH;
              case 4:
                *plen++ = prev;
            }
            *plen++ = prev;
            *plen++ = prev;
            *plen++ = prev;
          } else if (v == 17) {
            unsigned int c;

            c = 3 + (val & 0x7);
            val >>= 3;
            bits -= 3;
            if (unlikely((unsigned int)(plenend - plen) < c)) {
              elf_uncompress_failed();
              return 0;
            }

            switch (c) {
              case 10:
                *plen++ = 0;
                ATTRIBUTE_FALLTHROUGH;
              case 9:
                *plen++ = 0;
                ATTRIBUTE_FALLTHROUGH;
              case 8:
                *plen++ = 0;
                ATTRIBUTE_FALLTHROUGH;
              case 7:
                *plen++ = 0;
                ATTRIBUTE_FALLTHROUGH;
              case 6:
                *plen++ = 0;
                ATTRIBUTE_FALLTHROUGH;
              case 5:
                *plen++ = 0;
                ATTRIBUTE_FALLTHROUGH;
              case 4:
                *plen++ = 0;
            }
            *plen++ = 0;
            *plen++ = 0;
            *plen++ = 0;
          } else if (v == 18) {
            unsigned int c;

            c = 11 + (val & 0x7f);
            val >>= 7;
            bits -= 7;
            if (unlikely((unsigned int)(plenend - plen) < c)) {
              elf_uncompress_failed();
              return 0;
            }

            memset(plen, 0, c);
            plen += c;
          } else {
            elf_uncompress_failed();
            return 0;
          }
        }

        plen = plenbase;
        if (unlikely(plen[256] == 0)) {
          elf_uncompress_failed();
          return 0;
        }

        if (!elf_zlib_inflate_table(plen, nlit, zdebug_table, zdebug_table))
          return 0;
        if (!elf_zlib_inflate_table(plen + nlit, ndist, zdebug_table,
                                    zdebug_table + HUFFMAN_TABLE_SIZE))
          return 0;
        tlit = zdebug_table;
        tdist = zdebug_table + HUFFMAN_TABLE_SIZE;
      }

      while (1) {
        uint16_t t;
        unsigned int b;
        uint16_t v;
        unsigned int lit;

        if (!elf_zlib_fetch(&pin, pinend, &val, &bits)) return 0;

        t = tlit[val & 0xff];
        b = (t >> HUFFMAN_BITS_SHIFT) & HUFFMAN_BITS_MASK;
        v = t & HUFFMAN_VALUE_MASK;

        if ((t & (1U << HUFFMAN_SECONDARY_SHIFT)) == 0) {
          lit = v;
          val >>= b + 1;
          bits -= b + 1;
        } else {
          t = tlit[v + 0x100 + ((val >> 8) & ((1U << b) - 1))];
          b = (t >> HUFFMAN_BITS_SHIFT) & HUFFMAN_BITS_MASK;
          lit = t & HUFFMAN_VALUE_MASK;
          val >>= b + 8;
          bits -= b + 8;
        }

        if (lit < 256) {
          if (unlikely(pout == poutend)) {
            elf_uncompress_failed();
            return 0;
          }

          *pout++ = lit;

          __builtin_prefetch(pout, 1, 3);
        } else if (lit == 256) {
          break;
        } else {
          unsigned int dist;
          unsigned int len;

          if (lit < 265)
            len = lit - 257 + 3;
          else if (lit == 285)
            len = 258;
          else if (unlikely(lit > 285)) {
            elf_uncompress_failed();
            return 0;
          } else {
            unsigned int extra;

            if (!elf_zlib_fetch(&pin, pinend, &val, &bits)) return 0;

            lit -= 265;
            extra = (lit >> 2) + 1;
            len = (lit & 3) << extra;
            len += 11;
            len += ((1U << (extra - 1)) - 1) << 3;
            len += val & ((1U << extra) - 1);
            val >>= extra;
            bits -= extra;
          }

          if (!elf_zlib_fetch(&pin, pinend, &val, &bits)) return 0;

          t = tdist[val & 0xff];
          b = (t >> HUFFMAN_BITS_SHIFT) & HUFFMAN_BITS_MASK;
          v = t & HUFFMAN_VALUE_MASK;

          if ((t & (1U << HUFFMAN_SECONDARY_SHIFT)) == 0) {
            dist = v;
            val >>= b + 1;
            bits -= b + 1;
          } else {
            t = tdist[v + 0x100 + ((val >> 8) & ((1U << b) - 1))];
            b = (t >> HUFFMAN_BITS_SHIFT) & HUFFMAN_BITS_MASK;
            dist = t & HUFFMAN_VALUE_MASK;
            val >>= b + 8;
            bits -= b + 8;
          }

          if (dist == 0) {
            if (unlikely(pout == porigout)) {
              elf_uncompress_failed();
              return 0;
            }

            if (unlikely((unsigned int)(poutend - pout) < len)) {
              elf_uncompress_failed();
              return 0;
            }

            memset(pout, pout[-1], len);
            pout += len;
          } else if (unlikely(dist > 29)) {
            elf_uncompress_failed();
            return 0;
          } else {
            if (dist < 4)
              dist = dist + 1;
            else {
              unsigned int extra;

              if (!elf_zlib_fetch(&pin, pinend, &val, &bits)) return 0;

              dist -= 4;
              extra = (dist >> 1) + 1;
              dist = (dist & 1) << extra;
              dist += 5;
              dist += ((1U << (extra - 1)) - 1) << 2;
              dist += val & ((1U << extra) - 1);
              val >>= extra;
              bits -= extra;
            }

            if (unlikely((unsigned int)(pout - porigout) < dist)) {
              elf_uncompress_failed();
              return 0;
            }

            if (unlikely((unsigned int)(poutend - pout) < len)) {
              elf_uncompress_failed();
              return 0;
            }

            if (dist >= len) {
              memcpy(pout, pout - dist, len);
              pout += len;
            } else {
              while (len > 0) {
                unsigned int copy;

                copy = len < dist ? len : dist;
                memcpy(pout, pout - dist, copy);
                len -= copy;
                pout += copy;
              }
            }
          }
        }
      }
    }
  }

  if (unlikely(pout != poutend)) {
    elf_uncompress_failed();
    return 0;
  }

  return 1;
}

static int elf_zlib_verify_checksum(const unsigned char *checkbytes,
                                    const unsigned char *uncompressed,
                                    size_t uncompressed_size) {
  unsigned int i;
  unsigned int cksum;
  const unsigned char *p;
  uint32_t s1;
  uint32_t s2;
  size_t hsz;

  cksum = 0;
  for (i = 0; i < 4; i++) cksum = (cksum << 8) | checkbytes[i];

  s1 = 1;
  s2 = 0;

  p = uncompressed;
  hsz = uncompressed_size;
  while (hsz >= 5552) {
    for (i = 0; i < 5552; i += 16) {
      s1 = s1 + *p++;
      s2 = s2 + s1;
      s1 = s1 + *p++;
      s2 = s2 + s1;
      s1 = s1 + *p++;
      s2 = s2 + s1;
      s1 = s1 + *p++;
      s2 = s2 + s1;
      s1 = s1 + *p++;
      s2 = s2 + s1;
      s1 = s1 + *p++;
      s2 = s2 + s1;
      s1 = s1 + *p++;
      s2 = s2 + s1;
      s1 = s1 + *p++;
      s2 = s2 + s1;
      s1 = s1 + *p++;
      s2 = s2 + s1;
      s1 = s1 + *p++;
      s2 = s2 + s1;
      s1 = s1 + *p++;
      s2 = s2 + s1;
      s1 = s1 + *p++;
      s2 = s2 + s1;
      s1 = s1 + *p++;
      s2 = s2 + s1;
      s1 = s1 + *p++;
      s2 = s2 + s1;
      s1 = s1 + *p++;
      s2 = s2 + s1;
      s1 = s1 + *p++;
      s2 = s2 + s1;
    }
    hsz -= 5552;
    s1 %= 65521;
    s2 %= 65521;
  }

  while (hsz >= 16) {
    s1 = s1 + *p++;
    s2 = s2 + s1;
    s1 = s1 + *p++;
    s2 = s2 + s1;
    s1 = s1 + *p++;
    s2 = s2 + s1;
    s1 = s1 + *p++;
    s2 = s2 + s1;
    s1 = s1 + *p++;
    s2 = s2 + s1;
    s1 = s1 + *p++;
    s2 = s2 + s1;
    s1 = s1 + *p++;
    s2 = s2 + s1;
    s1 = s1 + *p++;
    s2 = s2 + s1;
    s1 = s1 + *p++;
    s2 = s2 + s1;
    s1 = s1 + *p++;
    s2 = s2 + s1;
    s1 = s1 + *p++;
    s2 = s2 + s1;
    s1 = s1 + *p++;
    s2 = s2 + s1;
    s1 = s1 + *p++;
    s2 = s2 + s1;
    s1 = s1 + *p++;
    s2 = s2 + s1;
    s1 = s1 + *p++;
    s2 = s2 + s1;
    s1 = s1 + *p++;
    s2 = s2 + s1;

    hsz -= 16;
  }

  for (i = 0; i < hsz; ++i) {
    s1 = s1 + *p++;
    s2 = s2 + s1;
  }

  s1 %= 65521;
  s2 %= 65521;

  if (unlikely((s2 << 16) + s1 != cksum)) {
    elf_uncompress_failed();
    return 0;
  }

  return 1;
}

static int elf_zlib_inflate_and_verify(const unsigned char *pin, size_t sin,
                                       uint16_t *zdebug_table,
                                       unsigned char *pout, size_t sout) {
  if (!elf_zlib_inflate(pin, sin, zdebug_table, pout, sout)) return 0;
  if (!elf_zlib_verify_checksum(pin + sin - 4, pout, sout)) return 0;
  return 1;
}

static int elf_uncompress_zdebug(struct backtrace_state *state,
                                 const unsigned char *compressed,
                                 size_t compressed_size, uint16_t *zdebug_table,
                                 backtrace_error_callback error_callback,
                                 void *data, unsigned char **uncompressed,
                                 size_t *uncompressed_size) {
  size_t sz;
  size_t i;
  unsigned char *po;

  *uncompressed = NULL;
  *uncompressed_size = 0;

  if (compressed_size < 12 || memcmp(compressed, "ZLIB", 4) != 0) return 1;

  sz = 0;
  for (i = 0; i < 8; i++) sz = (sz << 8) | compressed[i + 4];

  if (*uncompressed != NULL && *uncompressed_size >= sz)
    po = *uncompressed;
  else {
    po = (unsigned char *)backtrace_alloc(state, sz, error_callback, data);
    if (po == NULL) return 0;
  }

  if (!elf_zlib_inflate_and_verify(compressed + 12, compressed_size - 12,
                                   zdebug_table, po, sz))
    return 1;

  *uncompressed = po;
  *uncompressed_size = sz;

  return 1;
}

static int elf_uncompress_chdr(struct backtrace_state *state,
                               const unsigned char *compressed,
                               size_t compressed_size, uint16_t *zdebug_table,
                               backtrace_error_callback error_callback,
                               void *data, unsigned char **uncompressed,
                               size_t *uncompressed_size) {
  const b_elf_chdr *chdr;
  unsigned char *po;

  *uncompressed = NULL;
  *uncompressed_size = 0;

  if (compressed_size < sizeof(b_elf_chdr)) return 1;

  chdr = (const b_elf_chdr *)compressed;

  if (chdr->ch_type != ELFCOMPRESS_ZLIB) {
    return 1;
  }

  if (*uncompressed != NULL && *uncompressed_size >= chdr->ch_size)
    po = *uncompressed;
  else {
    po = (unsigned char *)backtrace_alloc(state, chdr->ch_size, error_callback,
                                          data);
    if (po == NULL) return 0;
  }

  if (!elf_zlib_inflate_and_verify(compressed + sizeof(b_elf_chdr),
                                   compressed_size - sizeof(b_elf_chdr),
                                   zdebug_table, po, chdr->ch_size))
    return 1;

  *uncompressed = po;
  *uncompressed_size = chdr->ch_size;

  return 1;
}

int backtrace_uncompress_zdebug(struct backtrace_state *state,
                                const unsigned char *compressed,
                                size_t compressed_size,
                                backtrace_error_callback error_callback,
                                void *data, unsigned char **uncompressed,
                                size_t *uncompressed_size) {
  uint16_t *zdebug_table;
  int ret;

  zdebug_table = ((uint16_t *)backtrace_alloc(state, ZDEBUG_TABLE_SIZE,
                                              error_callback, data));
  if (zdebug_table == NULL) return 0;
  ret = elf_uncompress_zdebug(state, compressed, compressed_size, zdebug_table,
                              error_callback, data, uncompressed,
                              uncompressed_size);
  backtrace_free(state, zdebug_table, ZDEBUG_TABLE_SIZE, error_callback, data);
  return ret;
}

#define LZMA_STATES (12)

#define LZMA_POS_STATES (16)

#define LZMA_DIST_STATES (4)

#define LZMA_DIST_SLOTS (64)

#define LZMA_DIST_MODEL_START (4)

#define LZMA_DIST_MODEL_END (14)

#define LZMA_FULL_DISTANCES (128)

#define LZMA_ALIGN_SIZE (16)

#define LZMA_LEN_LOW_SYMBOLS (8)
#define LZMA_LEN_MID_SYMBOLS (8)
#define LZMA_LEN_HIGH_SYMBOLS (256)

#define LZMA_LITERAL_CODERS_MAX (16)
#define LZMA_LITERAL_CODER_SIZE (0x300)

#define LZMA_PROB_IS_MATCH_LEN (LZMA_STATES * LZMA_POS_STATES)
#define LZMA_PROB_IS_REP_LEN LZMA_STATES
#define LZMA_PROB_IS_REP0_LEN LZMA_STATES
#define LZMA_PROB_IS_REP1_LEN LZMA_STATES
#define LZMA_PROB_IS_REP2_LEN LZMA_STATES
#define LZMA_PROB_IS_REP0_LONG_LEN (LZMA_STATES * LZMA_POS_STATES)
#define LZMA_PROB_DIST_SLOT_LEN (LZMA_DIST_STATES * LZMA_DIST_SLOTS)
#define LZMA_PROB_DIST_SPECIAL_LEN (LZMA_FULL_DISTANCES - LZMA_DIST_MODEL_END)
#define LZMA_PROB_DIST_ALIGN_LEN LZMA_ALIGN_SIZE
#define LZMA_PROB_MATCH_LEN_CHOICE_LEN 1
#define LZMA_PROB_MATCH_LEN_CHOICE2_LEN 1
#define LZMA_PROB_MATCH_LEN_LOW_LEN (LZMA_POS_STATES * LZMA_LEN_LOW_SYMBOLS)
#define LZMA_PROB_MATCH_LEN_MID_LEN (LZMA_POS_STATES * LZMA_LEN_MID_SYMBOLS)
#define LZMA_PROB_MATCH_LEN_HIGH_LEN LZMA_LEN_HIGH_SYMBOLS
#define LZMA_PROB_REP_LEN_CHOICE_LEN 1
#define LZMA_PROB_REP_LEN_CHOICE2_LEN 1
#define LZMA_PROB_REP_LEN_LOW_LEN (LZMA_POS_STATES * LZMA_LEN_LOW_SYMBOLS)
#define LZMA_PROB_REP_LEN_MID_LEN (LZMA_POS_STATES * LZMA_LEN_MID_SYMBOLS)
#define LZMA_PROB_REP_LEN_HIGH_LEN LZMA_LEN_HIGH_SYMBOLS
#define LZMA_PROB_LITERAL_LEN \
  (LZMA_LITERAL_CODERS_MAX * LZMA_LITERAL_CODER_SIZE)

#define LZMA_PROB_IS_MATCH_OFFSET 0
#define LZMA_PROB_IS_REP_OFFSET \
  (LZMA_PROB_IS_MATCH_OFFSET + LZMA_PROB_IS_MATCH_LEN)
#define LZMA_PROB_IS_REP0_OFFSET \
  (LZMA_PROB_IS_REP_OFFSET + LZMA_PROB_IS_REP_LEN)
#define LZMA_PROB_IS_REP1_OFFSET \
  (LZMA_PROB_IS_REP0_OFFSET + LZMA_PROB_IS_REP0_LEN)
#define LZMA_PROB_IS_REP2_OFFSET \
  (LZMA_PROB_IS_REP1_OFFSET + LZMA_PROB_IS_REP1_LEN)
#define LZMA_PROB_IS_REP0_LONG_OFFSET \
  (LZMA_PROB_IS_REP2_OFFSET + LZMA_PROB_IS_REP2_LEN)
#define LZMA_PROB_DIST_SLOT_OFFSET \
  (LZMA_PROB_IS_REP0_LONG_OFFSET + LZMA_PROB_IS_REP0_LONG_LEN)
#define LZMA_PROB_DIST_SPECIAL_OFFSET \
  (LZMA_PROB_DIST_SLOT_OFFSET + LZMA_PROB_DIST_SLOT_LEN)
#define LZMA_PROB_DIST_ALIGN_OFFSET \
  (LZMA_PROB_DIST_SPECIAL_OFFSET + LZMA_PROB_DIST_SPECIAL_LEN)
#define LZMA_PROB_MATCH_LEN_CHOICE_OFFSET \
  (LZMA_PROB_DIST_ALIGN_OFFSET + LZMA_PROB_DIST_ALIGN_LEN)
#define LZMA_PROB_MATCH_LEN_CHOICE2_OFFSET \
  (LZMA_PROB_MATCH_LEN_CHOICE_OFFSET + LZMA_PROB_MATCH_LEN_CHOICE_LEN)
#define LZMA_PROB_MATCH_LEN_LOW_OFFSET \
  (LZMA_PROB_MATCH_LEN_CHOICE2_OFFSET + LZMA_PROB_MATCH_LEN_CHOICE2_LEN)
#define LZMA_PROB_MATCH_LEN_MID_OFFSET \
  (LZMA_PROB_MATCH_LEN_LOW_OFFSET + LZMA_PROB_MATCH_LEN_LOW_LEN)
#define LZMA_PROB_MATCH_LEN_HIGH_OFFSET \
  (LZMA_PROB_MATCH_LEN_MID_OFFSET + LZMA_PROB_MATCH_LEN_MID_LEN)
#define LZMA_PROB_REP_LEN_CHOICE_OFFSET \
  (LZMA_PROB_MATCH_LEN_HIGH_OFFSET + LZMA_PROB_MATCH_LEN_HIGH_LEN)
#define LZMA_PROB_REP_LEN_CHOICE2_OFFSET \
  (LZMA_PROB_REP_LEN_CHOICE_OFFSET + LZMA_PROB_REP_LEN_CHOICE_LEN)
#define LZMA_PROB_REP_LEN_LOW_OFFSET \
  (LZMA_PROB_REP_LEN_CHOICE2_OFFSET + LZMA_PROB_REP_LEN_CHOICE2_LEN)
#define LZMA_PROB_REP_LEN_MID_OFFSET \
  (LZMA_PROB_REP_LEN_LOW_OFFSET + LZMA_PROB_REP_LEN_LOW_LEN)
#define LZMA_PROB_REP_LEN_HIGH_OFFSET \
  (LZMA_PROB_REP_LEN_MID_OFFSET + LZMA_PROB_REP_LEN_MID_LEN)
#define LZMA_PROB_LITERAL_OFFSET \
  (LZMA_PROB_REP_LEN_HIGH_OFFSET + LZMA_PROB_REP_LEN_HIGH_LEN)

#define LZMA_PROB_TOTAL_COUNT (LZMA_PROB_LITERAL_OFFSET + LZMA_PROB_LITERAL_LEN)

#if LZMA_PROB_TOTAL_COUNT != 1846 + (1 << 4) * 0x300
#error Wrong number of LZMA probabilities
#endif

#define LZMA_IS_MATCH(state, pos) \
  (LZMA_PROB_IS_MATCH_OFFSET + (state)*LZMA_POS_STATES + (pos))
#define LZMA_IS_REP(state) (LZMA_PROB_IS_REP_OFFSET + (state))
#define LZMA_IS_REP0(state) (LZMA_PROB_IS_REP0_OFFSET + (state))
#define LZMA_IS_REP1(state) (LZMA_PROB_IS_REP1_OFFSET + (state))
#define LZMA_IS_REP2(state) (LZMA_PROB_IS_REP2_OFFSET + (state))
#define LZMA_IS_REP0_LONG(state, pos) \
  (LZMA_PROB_IS_REP0_LONG_OFFSET + (state)*LZMA_POS_STATES + (pos))
#define LZMA_DIST_SLOT(dist, slot) \
  (LZMA_PROB_DIST_SLOT_OFFSET + (dist)*LZMA_DIST_SLOTS + (slot))
#define LZMA_DIST_SPECIAL(dist) (LZMA_PROB_DIST_SPECIAL_OFFSET + (dist))
#define LZMA_DIST_ALIGN(dist) (LZMA_PROB_DIST_ALIGN_OFFSET + (dist))
#define LZMA_MATCH_LEN_CHOICE LZMA_PROB_MATCH_LEN_CHOICE_OFFSET
#define LZMA_MATCH_LEN_CHOICE2 LZMA_PROB_MATCH_LEN_CHOICE2_OFFSET
#define LZMA_MATCH_LEN_LOW(pos, sym) \
  (LZMA_PROB_MATCH_LEN_LOW_OFFSET + (pos)*LZMA_LEN_LOW_SYMBOLS + (sym))
#define LZMA_MATCH_LEN_MID(pos, sym) \
  (LZMA_PROB_MATCH_LEN_MID_OFFSET + (pos)*LZMA_LEN_MID_SYMBOLS + (sym))
#define LZMA_MATCH_LEN_HIGH(sym) (LZMA_PROB_MATCH_LEN_HIGH_OFFSET + (sym))
#define LZMA_REP_LEN_CHOICE LZMA_PROB_REP_LEN_CHOICE_OFFSET
#define LZMA_REP_LEN_CHOICE2 LZMA_PROB_REP_LEN_CHOICE2_OFFSET
#define LZMA_REP_LEN_LOW(pos, sym) \
  (LZMA_PROB_REP_LEN_LOW_OFFSET + (pos)*LZMA_LEN_LOW_SYMBOLS + (sym))
#define LZMA_REP_LEN_MID(pos, sym) \
  (LZMA_PROB_REP_LEN_MID_OFFSET + (pos)*LZMA_LEN_MID_SYMBOLS + (sym))
#define LZMA_REP_LEN_HIGH(sym) (LZMA_PROB_REP_LEN_HIGH_OFFSET + (sym))
#define LZMA_LITERAL(code, size) \
  (LZMA_PROB_LITERAL_OFFSET + (code)*LZMA_LITERAL_CODER_SIZE + (size))

static int elf_lzma_varint(const unsigned char *compressed,
                           size_t compressed_size, size_t *poffset,
                           uint64_t *val) {
  size_t off;
  int i;
  uint64_t v;
  unsigned char b;

  off = *poffset;
  i = 0;
  v = 0;
  while (1) {
    if (unlikely(off >= compressed_size)) {
      elf_uncompress_failed();
      return 0;
    }
    b = compressed[off];
    v |= (b & 0x7f) << (i * 7);
    ++off;
    if ((b & 0x80) == 0) {
      *poffset = off;
      *val = v;
      return 1;
    }
    ++i;
    if (unlikely(i >= 9)) {
      elf_uncompress_failed();
      return 0;
    }
  }
}

static void elf_lzma_range_normalize(const unsigned char *compressed,
                                     size_t compressed_size, size_t *poffset,
                                     uint32_t *prange, uint32_t *pcode) {
  if (*prange < (1U << 24)) {
    if (unlikely(*poffset >= compressed_size)) {
      elf_uncompress_failed();
      return;
    }
    *prange <<= 8;
    *pcode <<= 8;
    *pcode += compressed[*poffset];
    ++*poffset;
  }
}

static int elf_lzma_bit(const unsigned char *compressed, size_t compressed_size,
                        uint16_t *prob, size_t *poffset, uint32_t *prange,
                        uint32_t *pcode) {
  uint32_t bound;

  elf_lzma_range_normalize(compressed, compressed_size, poffset, prange, pcode);
  bound = (*prange >> 11) * (uint32_t)*prob;
  if (*pcode < bound) {
    *prange = bound;
    *prob += ((1U << 11) - *prob) >> 5;
    return 0;
  } else {
    *prange -= bound;
    *pcode -= bound;
    *prob -= *prob >> 5;
    return 1;
  }
}

static uint32_t elf_lzma_integer(const unsigned char *compressed,
                                 size_t compressed_size, uint16_t *probs,
                                 uint32_t bits, size_t *poffset,
                                 uint32_t *prange, uint32_t *pcode) {
  uint32_t sym;
  uint32_t i;

  sym = 1;
  for (i = 0; i < bits; i++) {
    int bit;

    bit = elf_lzma_bit(compressed, compressed_size, probs + sym, poffset,
                       prange, pcode);
    sym <<= 1;
    sym += bit;
  }
  return sym - (1 << bits);
}

static uint32_t elf_lzma_reverse_integer(const unsigned char *compressed,
                                         size_t compressed_size,
                                         uint16_t *probs, uint32_t bits,
                                         size_t *poffset, uint32_t *prange,
                                         uint32_t *pcode) {
  uint32_t sym;
  uint32_t val;
  uint32_t i;

  sym = 1;
  val = 0;
  for (i = 0; i < bits; i++) {
    int bit;

    bit = elf_lzma_bit(compressed, compressed_size, probs + sym, poffset,
                       prange, pcode);
    sym <<= 1;
    sym += bit;
    val += bit << i;
  }
  return val;
}

static uint32_t elf_lzma_len(const unsigned char *compressed,
                             size_t compressed_size, uint16_t *probs,
                             int is_rep, unsigned int pos_state,
                             size_t *poffset, uint32_t *prange,
                             uint32_t *pcode) {
  uint16_t *probs_choice;
  uint16_t *probs_sym;
  uint32_t bits;
  uint32_t len;

  probs_choice = probs + (is_rep ? LZMA_REP_LEN_CHOICE : LZMA_MATCH_LEN_CHOICE);
  if (elf_lzma_bit(compressed, compressed_size, probs_choice, poffset, prange,
                   pcode)) {
    probs_choice =
        probs + (is_rep ? LZMA_REP_LEN_CHOICE2 : LZMA_MATCH_LEN_CHOICE2);
    if (elf_lzma_bit(compressed, compressed_size, probs_choice, poffset, prange,
                     pcode)) {
      probs_sym =
          probs + (is_rep ? LZMA_REP_LEN_HIGH(0) : LZMA_MATCH_LEN_HIGH(0));
      bits = 8;
      len = 2 + 8 + 8;
    } else {
      probs_sym = probs + (is_rep ? LZMA_REP_LEN_MID(pos_state, 0)
                                  : LZMA_MATCH_LEN_MID(pos_state, 0));
      bits = 3;
      len = 2 + 8;
    }
  } else {
    probs_sym = probs + (is_rep ? LZMA_REP_LEN_LOW(pos_state, 0)
                                : LZMA_MATCH_LEN_LOW(pos_state, 0));
    bits = 3;
    len = 2;
  }

  len += elf_lzma_integer(compressed, compressed_size, probs_sym, bits, poffset,
                          prange, pcode);
  return len;
}

static int elf_uncompress_lzma_block(const unsigned char *compressed,
                                     size_t compressed_size,
                                     unsigned char check, uint16_t *probs,
                                     unsigned char *uncompressed,
                                     size_t uncompressed_size,
                                     size_t *poffset) {
  size_t off;
  size_t block_header_offset;
  size_t block_header_size;
  unsigned char block_flags;
  uint64_t header_compressed_size;
  uint64_t header_uncompressed_size;
  unsigned char lzma2_properties;
  uint32_t computed_crc;
  uint32_t stream_crc;
  size_t uncompressed_offset;
  size_t dict_start_offset;
  unsigned int lc;
  unsigned int lp;
  unsigned int pb;
  uint32_t range;
  uint32_t code;
  uint32_t lstate;
  uint32_t dist[4];

  off = *poffset;
  block_header_offset = off;

  if (unlikely(off >= compressed_size)) {
    elf_uncompress_failed();
    return 0;
  }
  block_header_size = (compressed[off] + 1) * 4;
  if (unlikely(off + block_header_size > compressed_size)) {
    elf_uncompress_failed();
    return 0;
  }

  block_flags = compressed[off + 1];
  if (unlikely((block_flags & 0x3c) != 0)) {
    elf_uncompress_failed();
    return 0;
  }

  off += 2;

  header_compressed_size = 0;
  if ((block_flags & 0x40) != 0) {
    *poffset = off;
    if (!elf_lzma_varint(compressed, compressed_size, poffset,
                         &header_compressed_size))
      return 0;
    off = *poffset;
  }

  header_uncompressed_size = 0;
  if ((block_flags & 0x80) != 0) {
    *poffset = off;
    if (!elf_lzma_varint(compressed, compressed_size, poffset,
                         &header_uncompressed_size))
      return 0;
    off = *poffset;
  }

  if (unlikely((block_flags & 0x3) != 0)) {
    elf_uncompress_failed();
    return 0;
  }

  if (unlikely(off + 2 >= block_header_offset + block_header_size)) {
    elf_uncompress_failed();
    return 0;
  }

  if (unlikely(compressed[off] != 0x21)) {
    elf_uncompress_failed();
    return 0;
  }
  ++off;

  if (unlikely(compressed[off] != 1)) {
    elf_uncompress_failed();
    return 0;
  }
  ++off;

  lzma2_properties = compressed[off];
  ++off;

  if (unlikely(lzma2_properties > 40)) {
    elf_uncompress_failed();
    return 0;
  }

  if (unlikely(off + 4 > compressed_size)) {
    elf_uncompress_failed();
    return 0;
  }

  off = (off + 3) & ~(size_t)3;

  if (unlikely(off + 4 > compressed_size)) {
    elf_uncompress_failed();
    return 0;
  }

  computed_crc =
      elf_crc32(0, compressed + block_header_offset, block_header_size - 4);
  stream_crc = (compressed[off] | (compressed[off + 1] << 8) |
                (compressed[off + 2] << 16) | (compressed[off + 3] << 24));
  if (unlikely(computed_crc != stream_crc)) {
    elf_uncompress_failed();
    return 0;
  }
  off += 4;

  uncompressed_offset = 0;
  dict_start_offset = 0;
  lc = 0;
  lp = 0;
  pb = 0;
  lstate = 0;
  while (off < compressed_size) {
    unsigned char control;

    range = 0xffffffff;
    code = 0;

    control = compressed[off];
    ++off;
    if (unlikely(control == 0)) {
      break;
    }

    if (control == 1 || control >= 0xe0) {
      dict_start_offset = uncompressed_offset;
    }

    if (control < 0x80) {
      size_t chunk_size;

      if (unlikely(control > 2)) {
        elf_uncompress_failed();
        return 0;
      }

      if (unlikely(off + 2 > compressed_size)) {
        elf_uncompress_failed();
        return 0;
      }

      chunk_size = compressed[off] << 8;
      chunk_size += compressed[off + 1];
      ++chunk_size;

      off += 2;

      if (unlikely(off + chunk_size > compressed_size)) {
        elf_uncompress_failed();
        return 0;
      }
      if (unlikely(uncompressed_offset + chunk_size > uncompressed_size)) {
        elf_uncompress_failed();
        return 0;
      }

      memcpy(uncompressed + uncompressed_offset, compressed + off, chunk_size);
      uncompressed_offset += chunk_size;
      off += chunk_size;
    } else {
      size_t uncompressed_chunk_start;
      size_t uncompressed_chunk_size;
      size_t compressed_chunk_size;
      size_t limit;

      if (unlikely(off + 4 >= compressed_size)) {
        elf_uncompress_failed();
        return 0;
      }

      uncompressed_chunk_start = uncompressed_offset;

      uncompressed_chunk_size = (control & 0x1f) << 16;
      uncompressed_chunk_size += compressed[off] << 8;
      uncompressed_chunk_size += compressed[off + 1];
      ++uncompressed_chunk_size;

      compressed_chunk_size = compressed[off + 2] << 8;
      compressed_chunk_size += compressed[off + 3];
      ++compressed_chunk_size;

      off += 4;

      if (control >= 0xc0) {
        unsigned char props;

        if (unlikely(off >= compressed_size)) {
          elf_uncompress_failed();
          return 0;
        }
        props = compressed[off];
        ++off;
        if (unlikely(props > (4 * 5 + 4) * 9 + 8)) {
          elf_uncompress_failed();
          return 0;
        }
        pb = 0;
        while (props >= 9 * 5) {
          props -= 9 * 5;
          ++pb;
        }
        lp = 0;
        while (props > 9) {
          props -= 9;
          ++lp;
        }
        lc = props;
        if (unlikely(lc + lp > 4)) {
          elf_uncompress_failed();
          return 0;
        }
      }

      if (control >= 0xa0) {
        size_t i;

        lstate = 0;
        memset(&dist, 0, sizeof dist);
        for (i = 0; i < LZMA_PROB_TOTAL_COUNT; i++) probs[i] = 1 << 10;
        range = 0xffffffff;
        code = 0;
      }

      if (unlikely(off + 5 > compressed_size)) {
        elf_uncompress_failed();
        return 0;
      }

      code = ((compressed[off + 1] << 24) + (compressed[off + 2] << 16) +
              (compressed[off + 3] << 8) + compressed[off + 4]);
      off += 5;

      limit = off + compressed_chunk_size;
      *poffset = off;
      while (*poffset < limit) {
        unsigned int pos_state;

        if (unlikely(uncompressed_offset ==
                     (uncompressed_chunk_start + uncompressed_chunk_size))) {
          break;
        }

        pos_state =
            ((uncompressed_offset - dict_start_offset) & ((1 << pb) - 1));

        if (elf_lzma_bit(compressed, compressed_size,
                         probs + LZMA_IS_MATCH(lstate, pos_state), poffset,
                         &range, &code)) {
          uint32_t len;

          if (elf_lzma_bit(compressed, compressed_size,
                           probs + LZMA_IS_REP(lstate), poffset, &range,
                           &code)) {
            int short_rep;
            uint32_t next_dist;

            short_rep = 0;
            if (elf_lzma_bit(compressed, compressed_size,
                             probs + LZMA_IS_REP0(lstate), poffset, &range,
                             &code)) {
              if (elf_lzma_bit(compressed, compressed_size,
                               probs + LZMA_IS_REP1(lstate), poffset, &range,
                               &code)) {
                if (elf_lzma_bit(compressed, compressed_size,
                                 probs + LZMA_IS_REP2(lstate), poffset, &range,
                                 &code)) {
                  next_dist = dist[3];
                  dist[3] = dist[2];
                } else {
                  next_dist = dist[2];
                }
                dist[2] = dist[1];
              } else {
                next_dist = dist[1];
              }

              dist[1] = dist[0];
              dist[0] = next_dist;
            } else {
              if (!elf_lzma_bit(compressed, compressed_size,
                                (probs + LZMA_IS_REP0_LONG(lstate, pos_state)),
                                poffset, &range, &code))
                short_rep = 1;
            }

            if (lstate < 7)
              lstate = short_rep ? 9 : 8;
            else
              lstate = 11;

            if (short_rep)
              len = 1;
            else
              len = elf_lzma_len(compressed, compressed_size, probs, 1,
                                 pos_state, poffset, &range, &code);
          } else {
            uint32_t dist_state;
            uint32_t dist_slot;
            uint16_t *probs_dist;

            if (lstate < 7)
              lstate = 7;
            else
              lstate = 10;
            dist[3] = dist[2];
            dist[2] = dist[1];
            dist[1] = dist[0];
            len = elf_lzma_len(compressed, compressed_size, probs, 0, pos_state,
                               poffset, &range, &code);

            if (len < 4 + 2)
              dist_state = len - 2;
            else
              dist_state = 3;
            probs_dist = probs + LZMA_DIST_SLOT(dist_state, 0);
            dist_slot = elf_lzma_integer(compressed, compressed_size,
                                         probs_dist, 6, poffset, &range, &code);
            if (dist_slot < LZMA_DIST_MODEL_START)
              dist[0] = dist_slot;
            else {
              uint32_t limit;

              limit = (dist_slot >> 1) - 1;
              dist[0] = 2 + (dist_slot & 1);
              if (dist_slot < LZMA_DIST_MODEL_END) {
                dist[0] <<= limit;
                probs_dist =
                    (probs + LZMA_DIST_SPECIAL(dist[0] - dist_slot - 1));
                dist[0] += elf_lzma_reverse_integer(compressed, compressed_size,
                                                    probs_dist, limit, poffset,
                                                    &range, &code);
              } else {
                uint32_t dist0;
                uint32_t i;

                dist0 = dist[0];
                for (i = 0; i < limit - 4; i++) {
                  uint32_t mask;

                  elf_lzma_range_normalize(compressed, compressed_size, poffset,
                                           &range, &code);
                  range >>= 1;
                  code -= range;
                  mask = -(code >> 31);
                  code += range & mask;
                  dist0 <<= 1;
                  dist0 += mask + 1;
                }
                dist0 <<= 4;
                probs_dist = probs + LZMA_DIST_ALIGN(0);
                dist0 += elf_lzma_reverse_integer(compressed, compressed_size,
                                                  probs_dist, 4, poffset,
                                                  &range, &code);
                dist[0] = dist0;
              }
            }
          }

          if (unlikely(uncompressed_offset - dict_start_offset < dist[0] + 1)) {
            elf_uncompress_failed();
            return 0;
          }
          if (unlikely(uncompressed_offset + len > uncompressed_size)) {
            elf_uncompress_failed();
            return 0;
          }

          if (dist[0] == 0) {
            memset(uncompressed + uncompressed_offset,
                   uncompressed[uncompressed_offset - 1], len);
            uncompressed_offset += len;
          } else if (dist[0] + 1 >= len) {
            memcpy(uncompressed + uncompressed_offset,
                   uncompressed + uncompressed_offset - dist[0] - 1, len);
            uncompressed_offset += len;
          } else {
            while (len > 0) {
              uint32_t copy;

              copy = len < dist[0] + 1 ? len : dist[0] + 1;
              memcpy(uncompressed + uncompressed_offset,
                     (uncompressed + uncompressed_offset - dist[0] - 1), copy);
              len -= copy;
              uncompressed_offset += copy;
            }
          }
        } else {
          unsigned char prev;
          unsigned char low;
          size_t high;
          uint16_t *lit_probs;
          unsigned int sym;

          if (uncompressed_offset > 0)
            prev = uncompressed[uncompressed_offset - 1];
          else
            prev = 0;
          low = prev >> (8 - lc);
          high = (((uncompressed_offset - dict_start_offset) & ((1 << lp) - 1))
                  << lc);
          lit_probs = probs + LZMA_LITERAL(low + high, 0);
          if (lstate < 7)
            sym = elf_lzma_integer(compressed, compressed_size, lit_probs, 8,
                                   poffset, &range, &code);
          else {
            unsigned int match;
            unsigned int bit;
            unsigned int match_bit;
            unsigned int idx;

            sym = 1;
            if (uncompressed_offset >= dist[0] + 1)
              match = uncompressed[uncompressed_offset - dist[0] - 1];
            else
              match = 0;
            match <<= 1;
            bit = 0x100;
            do {
              match_bit = match & bit;
              match <<= 1;
              idx = bit + match_bit + sym;
              sym <<= 1;
              if (elf_lzma_bit(compressed, compressed_size, lit_probs + idx,
                               poffset, &range, &code)) {
                ++sym;
                bit &= match_bit;
              } else {
                bit &= ~match_bit;
              }
            } while (sym < 0x100);
          }

          if (unlikely(uncompressed_offset >= uncompressed_size)) {
            elf_uncompress_failed();
            return 0;
          }

          uncompressed[uncompressed_offset] = (unsigned char)sym;
          ++uncompressed_offset;
          if (lstate <= 3)
            lstate = 0;
          else if (lstate <= 9)
            lstate -= 3;
          else
            lstate -= 6;
        }
      }

      elf_lzma_range_normalize(compressed, compressed_size, poffset, &range,
                               &code);

      off = *poffset;
    }
  }

  off = (off + 3) & ~(size_t)3;
  if (unlikely(off > compressed_size)) {
    elf_uncompress_failed();
    return 0;
  }

  switch (check) {
    case 0:

      break;

    case 1:

      if (unlikely(off + 4 > compressed_size)) {
        elf_uncompress_failed();
        return 0;
      }
      computed_crc = elf_crc32(0, uncompressed, uncompressed_offset);
      stream_crc = (compressed[off] | (compressed[off + 1] << 8) |
                    (compressed[off + 2] << 16) | (compressed[off + 3] << 24));
      if (computed_crc != stream_crc) {
        elf_uncompress_failed();
        return 0;
      }
      off += 4;
      break;

    case 4:

      if (unlikely(off + 8 > compressed_size)) {
        elf_uncompress_failed();
        return 0;
      }
      off += 8;
      break;

    case 10:

      if (unlikely(off + 32 > compressed_size)) {
        elf_uncompress_failed();
        return 0;
      }
      off += 32;
      break;

    default:
      elf_uncompress_failed();
      return 0;
  }

  *poffset = off;

  return 1;
}

static int elf_uncompress_lzma(struct backtrace_state *state,
                               const unsigned char *compressed,
                               size_t compressed_size,
                               backtrace_error_callback error_callback,
                               void *data, unsigned char **uncompressed,
                               size_t *uncompressed_size) {
  size_t header_size;
  size_t footer_size;
  unsigned char check;
  uint32_t computed_crc;
  uint32_t stream_crc;
  size_t offset;
  size_t index_size;
  size_t footer_offset;
  size_t index_offset;
  uint64_t index_compressed_size;
  uint64_t index_uncompressed_size;
  unsigned char *mem;
  uint16_t *probs;
  size_t compressed_block_size;

  header_size = 12;
  footer_size = 12;
  if (unlikely(compressed_size < header_size + footer_size)) {
    elf_uncompress_failed();
    return 0;
  }

  if (unlikely(memcmp(compressed,
                      "\375"
                      "7zXZ\0",
                      6) != 0)) {
    elf_uncompress_failed();
    return 0;
  }

  if (unlikely(compressed[6] != 0)) {
    elf_uncompress_failed();
    return 0;
  }
  check = compressed[7];
  if (unlikely((check & 0xf8) != 0)) {
    elf_uncompress_failed();
    return 0;
  }

  computed_crc = elf_crc32(0, compressed + 6, 2);
  stream_crc = (compressed[8] | (compressed[9] << 8) | (compressed[10] << 16) |
                (compressed[11] << 24));
  if (unlikely(computed_crc != stream_crc)) {
    elf_uncompress_failed();
    return 0;
  }

  offset = compressed_size;
  if (unlikely(memcmp(compressed + offset - 2, "YZ", 2) != 0)) {
    elf_uncompress_failed();
    return 0;
  }
  offset -= 2;

  if (unlikely(compressed[offset - 2] != 0 ||
               compressed[offset - 1] != check)) {
    elf_uncompress_failed();
    return 0;
  }
  offset -= 2;

  index_size =
      (compressed[offset - 4] | (compressed[offset - 3] << 8) |
       (compressed[offset - 2] << 16) | (compressed[offset - 1] << 24));
  index_size = (index_size + 1) * 4;
  offset -= 4;

  computed_crc = elf_crc32(0, compressed + offset, 6);
  stream_crc =
      (compressed[offset - 4] | (compressed[offset - 3] << 8) |
       (compressed[offset - 2] << 16) | (compressed[offset - 1] << 24));
  if (unlikely(computed_crc != stream_crc)) {
    elf_uncompress_failed();
    return 0;
  }
  offset -= 4;

  if (unlikely(offset < index_size + header_size)) {
    elf_uncompress_failed();
    return 0;
  }

  footer_offset = offset;
  offset -= index_size;
  index_offset = offset;

  if (unlikely(compressed[offset] != 0)) {
    elf_uncompress_failed();
    return 0;
  }
  ++offset;

  if (unlikely(compressed[offset] == 0)) {
    *uncompressed = NULL;
    *uncompressed_size = 0;
    return 1;
  }
  if (unlikely(compressed[offset] != 1)) {
    elf_uncompress_failed();
    return 0;
  }
  ++offset;

  if (!elf_lzma_varint(compressed, compressed_size, &offset,
                       &index_compressed_size))
    return 0;
  if (!elf_lzma_varint(compressed, compressed_size, &offset,
                       &index_uncompressed_size))
    return 0;

  offset = (offset + 3) & ~(size_t)3;

  computed_crc = elf_crc32(0, compressed + index_offset, offset - index_offset);
  stream_crc =
      (compressed[offset] | (compressed[offset + 1] << 8) |
       (compressed[offset + 2] << 16) | (compressed[offset + 3] << 24));
  if (unlikely(computed_crc != stream_crc)) {
    elf_uncompress_failed();
    return 0;
  }
  offset += 4;

  if (unlikely(offset != footer_offset)) {
    elf_uncompress_failed();
    return 0;
  }

  mem = (unsigned char *)backtrace_alloc(state, index_uncompressed_size,
                                         error_callback, data);
  if (unlikely(mem == NULL)) return 0;
  *uncompressed = mem;
  *uncompressed_size = index_uncompressed_size;

  probs = ((uint16_t *)backtrace_alloc(
      state, LZMA_PROB_TOTAL_COUNT * sizeof(uint16_t), error_callback, data));
  if (unlikely(probs == NULL)) {
    backtrace_free(state, mem, index_uncompressed_size, error_callback, data);
    return 0;
  }

  offset = 12;
  if (!elf_uncompress_lzma_block(compressed, compressed_size, check, probs, mem,
                                 index_uncompressed_size, &offset)) {
    backtrace_free(state, mem, index_uncompressed_size, error_callback, data);
    return 0;
  }

  compressed_block_size = offset - 12;
  if (unlikely(compressed_block_size !=
               ((index_compressed_size + 3) & ~(size_t)3))) {
    elf_uncompress_failed();
    backtrace_free(state, mem, index_uncompressed_size, error_callback, data);
    return 0;
  }

  offset = (offset + 3) & ~(size_t)3;
  if (unlikely(offset != index_offset)) {
    elf_uncompress_failed();
    backtrace_free(state, mem, index_uncompressed_size, error_callback, data);
    return 0;
  }

  return 1;
}

int backtrace_uncompress_lzma(struct backtrace_state *state,
                              const unsigned char *compressed,
                              size_t compressed_size,
                              backtrace_error_callback error_callback,
                              void *data, unsigned char **uncompressed,
                              size_t *uncompressed_size) {
  return elf_uncompress_lzma(state, compressed, compressed_size, error_callback,
                             data, uncompressed, uncompressed_size);
}

static int elf_add(struct backtrace_state *state, const char *filename,
                   int descriptor, const unsigned char *memory,
                   size_t memory_size, uintptr_t base_address,
                   backtrace_error_callback error_callback, void *data,
                   fileline *fileline_fn, int *found_sym, int *found_dwarf,
                   struct dwarf_data **fileline_entry, int exe, int debuginfo,
                   const char *with_buildid_data, uint32_t with_buildid_size) {
  struct elf_view ehdr_view;
  b_elf_ehdr ehdr;
  off_t shoff;
  unsigned int shnum;
  unsigned int shstrndx;
  struct elf_view shdrs_view;
  int shdrs_view_valid;
  const b_elf_shdr *shdrs;
  const b_elf_shdr *shstrhdr;
  size_t shstr_size;
  off_t shstr_off;
  struct elf_view names_view;
  int names_view_valid;
  const char *names;
  unsigned int symtab_shndx;
  unsigned int dynsym_shndx;
  unsigned int i;
  struct debug_section_info sections[DEBUG_MAX];
  struct debug_section_info zsections[DEBUG_MAX];
  struct elf_view symtab_view;
  int symtab_view_valid;
  struct elf_view strtab_view;
  int strtab_view_valid;
  struct elf_view buildid_view;
  int buildid_view_valid;
  const char *buildid_data;
  uint32_t buildid_size;
  struct elf_view debuglink_view;
  int debuglink_view_valid;
  const char *debuglink_name;
  uint32_t debuglink_crc;
  struct elf_view debugaltlink_view;
  int debugaltlink_view_valid;
  const char *debugaltlink_name;
  const char *debugaltlink_buildid_data;
  uint32_t debugaltlink_buildid_size;
  struct elf_view gnu_debugdata_view;
  int gnu_debugdata_view_valid;
  size_t gnu_debugdata_size;
  unsigned char *gnu_debugdata_uncompressed;
  size_t gnu_debugdata_uncompressed_size;
  off_t min_offset;
  off_t max_offset;
  off_t debug_size;
  struct elf_view debug_view;
  int debug_view_valid;
  unsigned int using_debug_view;
  uint16_t *zdebug_table;
  struct elf_view split_debug_view[DEBUG_MAX];
  unsigned char split_debug_view_valid[DEBUG_MAX];
  struct elf_ppc64_opd_data opd_data, *opd;
  struct dwarf_sections dwarf_sections;

  if (!debuginfo) {
    *found_sym = 0;
    *found_dwarf = 0;
  }

  shdrs_view_valid = 0;
  names_view_valid = 0;
  symtab_view_valid = 0;
  strtab_view_valid = 0;
  buildid_view_valid = 0;
  buildid_data = NULL;
  buildid_size = 0;
  debuglink_view_valid = 0;
  debuglink_name = NULL;
  debuglink_crc = 0;
  debugaltlink_view_valid = 0;
  debugaltlink_name = NULL;
  debugaltlink_buildid_data = NULL;
  debugaltlink_buildid_size = 0;
  gnu_debugdata_view_valid = 0;
  gnu_debugdata_size = 0;
  debug_view_valid = 0;
  memset(&split_debug_view_valid[0], 0, sizeof split_debug_view_valid);
  opd = NULL;

  if (!elf_get_view(state, descriptor, memory, memory_size, 0, sizeof ehdr,
                    error_callback, data, &ehdr_view))
    goto fail;

  memcpy(&ehdr, ehdr_view.view.data, sizeof ehdr);

  elf_release_view(state, &ehdr_view, error_callback, data);

  if (ehdr.e_ident[EI_MAG0] != ELFMAG0 || ehdr.e_ident[EI_MAG1] != ELFMAG1 ||
      ehdr.e_ident[EI_MAG2] != ELFMAG2 || ehdr.e_ident[EI_MAG3] != ELFMAG3) {
    error_callback(data, "executable file is not ELF", 0);
    goto fail;
  }
  if (ehdr.e_ident[EI_VERSION] != EV_CURRENT) {
    error_callback(data, "executable file is unrecognized ELF version", 0);
    goto fail;
  }

#if BACKTRACE_ELF_SIZE == 32
#define BACKTRACE_ELFCLASS ELFCLASS32
#else
#define BACKTRACE_ELFCLASS ELFCLASS64
#endif

  if (ehdr.e_ident[EI_CLASS] != BACKTRACE_ELFCLASS) {
    error_callback(data, "executable file is unexpected ELF class", 0);
    goto fail;
  }

  if (ehdr.e_ident[EI_DATA] != ELFDATA2LSB &&
      ehdr.e_ident[EI_DATA] != ELFDATA2MSB) {
    error_callback(data, "executable file has unknown endianness", 0);
    goto fail;
  }

  if (exe && ehdr.e_type == ET_DYN) return -1;

  shoff = ehdr.e_shoff;
  shnum = ehdr.e_shnum;
  shstrndx = ehdr.e_shstrndx;

  if ((shnum == 0 || shstrndx == SHN_XINDEX) && shoff != 0) {
    struct elf_view shdr_view;
    const b_elf_shdr *shdr;

    if (!elf_get_view(state, descriptor, memory, memory_size, shoff,
                      sizeof shdr, error_callback, data, &shdr_view))
      goto fail;

    shdr = (const b_elf_shdr *)shdr_view.view.data;

    if (shnum == 0) shnum = shdr->sh_size;

    if (shstrndx == SHN_XINDEX) {
      shstrndx = shdr->sh_link;

      if (shstrndx >= shnum && shstrndx >= SHN_LORESERVE + 0x100)
        shstrndx -= 0x100;
    }

    elf_release_view(state, &shdr_view, error_callback, data);
  }

  if (shnum == 0 || shstrndx == 0) goto fail;

  if (!elf_get_view(
          state, descriptor, memory, memory_size, shoff + sizeof(b_elf_shdr),
          (shnum - 1) * sizeof(b_elf_shdr), error_callback, data, &shdrs_view))
    goto fail;
  shdrs_view_valid = 1;
  shdrs = (const b_elf_shdr *)shdrs_view.view.data;

  shstrhdr = &shdrs[shstrndx - 1];
  shstr_size = shstrhdr->sh_size;
  shstr_off = shstrhdr->sh_offset;

  if (!elf_get_view(state, descriptor, memory, memory_size, shstr_off,
                    shstrhdr->sh_size, error_callback, data, &names_view))
    goto fail;
  names_view_valid = 1;
  names = (const char *)names_view.view.data;

  symtab_shndx = 0;
  dynsym_shndx = 0;

  memset(sections, 0, sizeof sections);
  memset(zsections, 0, sizeof zsections);

  for (i = 1; i < shnum; ++i) {
    const b_elf_shdr *shdr;
    unsigned int sh_name;
    const char *name;
    int j;

    shdr = &shdrs[i - 1];

    if (shdr->sh_type == SHT_SYMTAB)
      symtab_shndx = i;
    else if (shdr->sh_type == SHT_DYNSYM)
      dynsym_shndx = i;

    sh_name = shdr->sh_name;
    if (sh_name >= shstr_size) {
      error_callback(data, "ELF section name out of range", 0);
      goto fail;
    }

    name = names + sh_name;

    for (j = 0; j < (int)DEBUG_MAX; ++j) {
      if (strcmp(name, dwarf_section_names[j]) == 0) {
        sections[j].offset = shdr->sh_offset;
        sections[j].size = shdr->sh_size;
        sections[j].compressed = (shdr->sh_flags & SHF_COMPRESSED) != 0;
        break;
      }
    }

    if (name[0] == '.' && name[1] == 'z') {
      for (j = 0; j < (int)DEBUG_MAX; ++j) {
        if (strcmp(name + 2, dwarf_section_names[j] + 1) == 0) {
          zsections[j].offset = shdr->sh_offset;
          zsections[j].size = shdr->sh_size;
          break;
        }
      }
    }

    if ((!debuginfo || with_buildid_data != NULL) && !buildid_view_valid &&
        strcmp(name, ".note.gnu.build-id") == 0) {
      const b_elf_note *note;

      if (!elf_get_view(state, descriptor, memory, memory_size, shdr->sh_offset,
                        shdr->sh_size, error_callback, data, &buildid_view))
        goto fail;

      buildid_view_valid = 1;
      note = (const b_elf_note *)buildid_view.view.data;
      if (note->type == NT_GNU_BUILD_ID && note->namesz == 4 &&
          strncmp(note->name, "GNU", 4) == 0 &&
          shdr->sh_size <= 12 + ((note->namesz + 3) & ~3) + note->descsz) {
        buildid_data = &note->name[0] + ((note->namesz + 3) & ~3);
        buildid_size = note->descsz;
      }

      if (with_buildid_size != 0) {
        if (buildid_size != with_buildid_size) goto fail;

        if (memcmp(buildid_data, with_buildid_data, buildid_size) != 0)
          goto fail;
      }
    }

    if (!debuginfo && !debuglink_view_valid &&
        strcmp(name, ".gnu_debuglink") == 0) {
      const char *debuglink_data;
      size_t crc_offset;

      if (!elf_get_view(state, descriptor, memory, memory_size, shdr->sh_offset,
                        shdr->sh_size, error_callback, data, &debuglink_view))
        goto fail;

      debuglink_view_valid = 1;
      debuglink_data = (const char *)debuglink_view.view.data;
      crc_offset = strnlen(debuglink_data, shdr->sh_size);
      crc_offset = (crc_offset + 3) & ~3;
      if (crc_offset + 4 <= shdr->sh_size) {
        debuglink_name = debuglink_data;
        debuglink_crc = *(const uint32_t *)(debuglink_data + crc_offset);
      }
    }

    if (!debugaltlink_view_valid && strcmp(name, ".gnu_debugaltlink") == 0) {
      const char *debugaltlink_data;
      size_t debugaltlink_name_len;

      if (!elf_get_view(state, descriptor, memory, memory_size, shdr->sh_offset,
                        shdr->sh_size, error_callback, data,
                        &debugaltlink_view))
        goto fail;

      debugaltlink_view_valid = 1;
      debugaltlink_data = (const char *)debugaltlink_view.view.data;
      debugaltlink_name = debugaltlink_data;
      debugaltlink_name_len = strnlen(debugaltlink_data, shdr->sh_size);
      if (debugaltlink_name_len < shdr->sh_size) {
        debugaltlink_name_len += 1;

        debugaltlink_buildid_data = debugaltlink_data + debugaltlink_name_len;
        debugaltlink_buildid_size = shdr->sh_size - debugaltlink_name_len;
      }
    }

    if (!gnu_debugdata_view_valid && strcmp(name, ".gnu_debugdata") == 0) {
      if (!elf_get_view(state, descriptor, memory, memory_size, shdr->sh_offset,
                        shdr->sh_size, error_callback, data,
                        &gnu_debugdata_view))
        goto fail;

      gnu_debugdata_size = shdr->sh_size;
      gnu_debugdata_view_valid = 1;
    }

    if (ehdr.e_machine == EM_PPC64 && (ehdr.e_flags & EF_PPC64_ABI) < 2 &&
        shdr->sh_type == SHT_PROGBITS && strcmp(name, ".opd") == 0) {
      if (!elf_get_view(state, descriptor, memory, memory_size, shdr->sh_offset,
                        shdr->sh_size, error_callback, data, &opd_data.view))
        goto fail;

      opd = &opd_data;
      opd->addr = shdr->sh_addr;
      opd->data = (const char *)opd_data.view.view.data;
      opd->size = shdr->sh_size;
    }
  }

  if (symtab_shndx == 0) symtab_shndx = dynsym_shndx;
  if (symtab_shndx != 0 && !debuginfo) {
    const b_elf_shdr *symtab_shdr;
    unsigned int strtab_shndx;
    const b_elf_shdr *strtab_shdr;
    struct elf_syminfo_data *sdata;

    symtab_shdr = &shdrs[symtab_shndx - 1];
    strtab_shndx = symtab_shdr->sh_link;
    if (strtab_shndx >= shnum) {
      error_callback(data, "ELF symbol table strtab link out of range", 0);
      goto fail;
    }
    strtab_shdr = &shdrs[strtab_shndx - 1];

    if (!elf_get_view(state, descriptor, memory, memory_size,
                      symtab_shdr->sh_offset, symtab_shdr->sh_size,
                      error_callback, data, &symtab_view))
      goto fail;
    symtab_view_valid = 1;

    if (!elf_get_view(state, descriptor, memory, memory_size,
                      strtab_shdr->sh_offset, strtab_shdr->sh_size,
                      error_callback, data, &strtab_view))
      goto fail;
    strtab_view_valid = 1;

    sdata = ((struct elf_syminfo_data *)backtrace_alloc(state, sizeof *sdata,
                                                        error_callback, data));
    if (sdata == NULL) goto fail;

    if (!elf_initialize_syminfo(state, base_address, symtab_view.view.data,
                                symtab_shdr->sh_size, strtab_view.view.data,
                                strtab_shdr->sh_size, error_callback, data,
                                sdata, opd)) {
      backtrace_free(state, sdata, sizeof *sdata, error_callback, data);
      goto fail;
    }

    elf_release_view(state, &symtab_view, error_callback, data);
    symtab_view_valid = 0;
    strtab_view_valid = 0;

    *found_sym = 1;

    elf_add_syminfo_data(state, sdata);
  }

  elf_release_view(state, &shdrs_view, error_callback, data);
  shdrs_view_valid = 0;
  elf_release_view(state, &names_view, error_callback, data);
  names_view_valid = 0;

  if (buildid_data != NULL) {
    int d;

    d = elf_open_debugfile_by_buildid(state, buildid_data, buildid_size,
                                      error_callback, data);
    if (d >= 0) {
      int ret;

      elf_release_view(state, &buildid_view, error_callback, data);
      if (debuglink_view_valid)
        elf_release_view(state, &debuglink_view, error_callback, data);
      if (debugaltlink_view_valid)
        elf_release_view(state, &debugaltlink_view, error_callback, data);
      ret = elf_add(state, "", d, NULL, 0, base_address, error_callback, data,
                    fileline_fn, found_sym, found_dwarf, NULL, 0, 1, NULL, 0);
      if (ret < 0)
        backtrace_close(d, error_callback, data);
      else if (descriptor >= 0)
        backtrace_close(descriptor, error_callback, data);
      return ret;
    }
  }

  if (buildid_view_valid) {
    elf_release_view(state, &buildid_view, error_callback, data);
    buildid_view_valid = 0;
  }

  if (opd) {
    elf_release_view(state, &opd->view, error_callback, data);
    opd = NULL;
  }

  if (debuglink_name != NULL) {
    int d;

    d = elf_open_debugfile_by_debuglink(state, filename, debuglink_name,
                                        debuglink_crc, error_callback, data);
    if (d >= 0) {
      int ret;

      elf_release_view(state, &debuglink_view, error_callback, data);
      if (debugaltlink_view_valid)
        elf_release_view(state, &debugaltlink_view, error_callback, data);
      ret = elf_add(state, "", d, NULL, 0, base_address, error_callback, data,
                    fileline_fn, found_sym, found_dwarf, NULL, 0, 1, NULL, 0);
      if (ret < 0)
        backtrace_close(d, error_callback, data);
      else if (descriptor >= 0)
        backtrace_close(descriptor, error_callback, data);
      return ret;
    }
  }

  if (debuglink_view_valid) {
    elf_release_view(state, &debuglink_view, error_callback, data);
    debuglink_view_valid = 0;
  }

  struct dwarf_data *fileline_altlink = NULL;
  if (debugaltlink_name != NULL) {
    int d;

    d = elf_open_debugfile_by_debuglink(state, filename, debugaltlink_name, 0,
                                        error_callback, data);
    if (d >= 0) {
      int ret;

      ret =
          elf_add(state, filename, d, NULL, 0, base_address, error_callback,
                  data, fileline_fn, found_sym, found_dwarf, &fileline_altlink,
                  0, 1, debugaltlink_buildid_data, debugaltlink_buildid_size);
      elf_release_view(state, &debugaltlink_view, error_callback, data);
      debugaltlink_view_valid = 0;
      if (ret < 0) {
        backtrace_close(d, error_callback, data);
        return ret;
      }
    }
  }

  if (debugaltlink_view_valid) {
    elf_release_view(state, &debugaltlink_view, error_callback, data);
    debugaltlink_view_valid = 0;
  }

  if (gnu_debugdata_view_valid) {
    int ret;

    ret = elf_uncompress_lzma(
        state, ((const unsigned char *)gnu_debugdata_view.view.data),
        gnu_debugdata_size, error_callback, data, &gnu_debugdata_uncompressed,
        &gnu_debugdata_uncompressed_size);

    elf_release_view(state, &gnu_debugdata_view, error_callback, data);
    gnu_debugdata_view_valid = 0;

    if (ret) {
      ret = elf_add(state, filename, -1, gnu_debugdata_uncompressed,
                    gnu_debugdata_uncompressed_size, base_address,
                    error_callback, data, fileline_fn, found_sym, found_dwarf,
                    NULL, 0, 0, NULL, 0);
      if (ret >= 0 && descriptor >= 0)
        backtrace_close(descriptor, error_callback, data);
      return ret;
    }
  }

  min_offset = 0;
  max_offset = 0;
  debug_size = 0;
  for (i = 0; i < (int)DEBUG_MAX; ++i) {
    off_t end;

    if (sections[i].size != 0) {
      if (min_offset == 0 || sections[i].offset < min_offset)
        min_offset = sections[i].offset;
      end = sections[i].offset + sections[i].size;
      if (end > max_offset) max_offset = end;
      debug_size += sections[i].size;
    }
    if (zsections[i].size != 0) {
      if (min_offset == 0 || zsections[i].offset < min_offset)
        min_offset = zsections[i].offset;
      end = zsections[i].offset + zsections[i].size;
      if (end > max_offset) max_offset = end;
      debug_size += zsections[i].size;
    }
  }
  if (min_offset == 0 || max_offset == 0) {
    if (descriptor >= 0) {
      if (!backtrace_close(descriptor, error_callback, data)) goto fail;
    }
    return 1;
  }

  if (max_offset - min_offset < 0x20000000 ||
      max_offset - min_offset < debug_size + 0x10000) {
    if (!elf_get_view(state, descriptor, memory, memory_size, min_offset,
                      max_offset - min_offset, error_callback, data,
                      &debug_view))
      goto fail;
    debug_view_valid = 1;
  } else {
    memset(&split_debug_view[0], 0, sizeof split_debug_view);
    for (i = 0; i < (int)DEBUG_MAX; ++i) {
      struct debug_section_info *dsec;

      if (sections[i].size != 0)
        dsec = &sections[i];
      else if (zsections[i].size != 0)
        dsec = &zsections[i];
      else
        continue;

      if (!elf_get_view(state, descriptor, memory, memory_size, dsec->offset,
                        dsec->size, error_callback, data, &split_debug_view[i]))
        goto fail;
      split_debug_view_valid[i] = 1;

      if (sections[i].size != 0)
        sections[i].data =
            ((const unsigned char *)split_debug_view[i].view.data);
      else
        zsections[i].data =
            ((const unsigned char *)split_debug_view[i].view.data);
    }
  }

  if (descriptor >= 0) {
    if (!backtrace_close(descriptor, error_callback, data)) goto fail;
    descriptor = -1;
  }

  using_debug_view = 0;
  if (debug_view_valid) {
    for (i = 0; i < (int)DEBUG_MAX; ++i) {
      if (sections[i].size == 0)
        sections[i].data = NULL;
      else {
        sections[i].data = ((const unsigned char *)debug_view.view.data +
                            (sections[i].offset - min_offset));
        ++using_debug_view;
      }

      if (zsections[i].size == 0)
        zsections[i].data = NULL;
      else
        zsections[i].data = ((const unsigned char *)debug_view.view.data +
                             (zsections[i].offset - min_offset));
    }
  }

  zdebug_table = NULL;
  for (i = 0; i < (int)DEBUG_MAX; ++i) {
    if (sections[i].size == 0 && zsections[i].size > 0) {
      unsigned char *uncompressed_data;
      size_t uncompressed_size;

      if (zdebug_table == NULL) {
        zdebug_table = ((uint16_t *)backtrace_alloc(state, ZDEBUG_TABLE_SIZE,
                                                    error_callback, data));
        if (zdebug_table == NULL) goto fail;
      }

      uncompressed_data = NULL;
      uncompressed_size = 0;
      if (!elf_uncompress_zdebug(state, zsections[i].data, zsections[i].size,
                                 zdebug_table, error_callback, data,
                                 &uncompressed_data, &uncompressed_size))
        goto fail;
      sections[i].data = uncompressed_data;
      sections[i].size = uncompressed_size;
      sections[i].compressed = 0;

      if (split_debug_view_valid[i]) {
        elf_release_view(state, &split_debug_view[i], error_callback, data);
        split_debug_view_valid[i] = 0;
      }
    }
  }

  for (i = 0; i < (int)DEBUG_MAX; ++i) {
    unsigned char *uncompressed_data;
    size_t uncompressed_size;

    if (sections[i].size == 0 || !sections[i].compressed) continue;

    if (zdebug_table == NULL) {
      zdebug_table = ((uint16_t *)backtrace_alloc(state, ZDEBUG_TABLE_SIZE,
                                                  error_callback, data));
      if (zdebug_table == NULL) goto fail;
    }

    uncompressed_data = NULL;
    uncompressed_size = 0;
    if (!elf_uncompress_chdr(state, sections[i].data, sections[i].size,
                             zdebug_table, error_callback, data,
                             &uncompressed_data, &uncompressed_size))
      goto fail;
    sections[i].data = uncompressed_data;
    sections[i].size = uncompressed_size;
    sections[i].compressed = 0;

    if (debug_view_valid)
      --using_debug_view;
    else if (split_debug_view_valid[i]) {
      elf_release_view(state, &split_debug_view[i], error_callback, data);
      split_debug_view_valid[i] = 0;
    }
  }

  if (zdebug_table != NULL)
    backtrace_free(state, zdebug_table, ZDEBUG_TABLE_SIZE, error_callback,
                   data);

  if (debug_view_valid && using_debug_view == 0) {
    elf_release_view(state, &debug_view, error_callback, data);
    debug_view_valid = 0;
  }

  for (i = 0; i < (int)DEBUG_MAX; ++i) {
    dwarf_sections.data[i] = sections[i].data;
    dwarf_sections.size[i] = sections[i].size;
  }

  if (!backtrace_dwarf_add(state, base_address, &dwarf_sections,
                           ehdr.e_ident[EI_DATA] == ELFDATA2MSB,
                           fileline_altlink, error_callback, data, fileline_fn,
                           fileline_entry))
    goto fail;

  *found_dwarf = 1;

  return 1;

fail:
  if (shdrs_view_valid)
    elf_release_view(state, &shdrs_view, error_callback, data);
  if (names_view_valid)
    elf_release_view(state, &names_view, error_callback, data);
  if (symtab_view_valid)
    elf_release_view(state, &symtab_view, error_callback, data);
  if (strtab_view_valid)
    elf_release_view(state, &strtab_view, error_callback, data);
  if (debuglink_view_valid)
    elf_release_view(state, &debuglink_view, error_callback, data);
  if (debugaltlink_view_valid)
    elf_release_view(state, &debugaltlink_view, error_callback, data);
  if (gnu_debugdata_view_valid)
    elf_release_view(state, &gnu_debugdata_view, error_callback, data);
  if (buildid_view_valid)
    elf_release_view(state, &buildid_view, error_callback, data);
  if (debug_view_valid)
    elf_release_view(state, &debug_view, error_callback, data);
  for (i = 0; i < (int)DEBUG_MAX; ++i) {
    if (split_debug_view_valid[i])
      elf_release_view(state, &split_debug_view[i], error_callback, data);
  }
  if (opd) elf_release_view(state, &opd->view, error_callback, data);
  if (descriptor >= 0) backtrace_close(descriptor, error_callback, data);
  return 0;
}

struct phdr_data {
  struct backtrace_state *state;
  backtrace_error_callback error_callback;
  void *data;
  fileline *fileline_fn;
  int *found_sym;
  int *found_dwarf;
  const char *exe_filename;
  int exe_descriptor;
};

static int
#ifdef __i386__
    __attribute__((__force_align_arg_pointer__))
#endif
    phdr_callback(struct dl_phdr_info *info, size_t size ATTRIBUTE_UNUSED,
                  void *pdata) {
  struct phdr_data *pd = (struct phdr_data *)pdata;
  const char *filename;
  int descriptor;
  int does_not_exist;
  fileline elf_fileline_fn;
  int found_dwarf;

  if (info->dlpi_name == NULL || info->dlpi_name[0] == '\0') {
    if (pd->exe_descriptor == -1) return 0;
    filename = pd->exe_filename;
    descriptor = pd->exe_descriptor;
    pd->exe_descriptor = -1;
  } else {
    if (pd->exe_descriptor != -1) {
      backtrace_close(pd->exe_descriptor, pd->error_callback, pd->data);
      pd->exe_descriptor = -1;
    }

    filename = info->dlpi_name;
    descriptor = backtrace_open(info->dlpi_name, pd->error_callback, pd->data,
                                &does_not_exist);
    if (descriptor < 0) return 0;
  }

  if (elf_add(pd->state, filename, descriptor, NULL, 0, info->dlpi_addr,
              pd->error_callback, pd->data, &elf_fileline_fn, pd->found_sym,
              &found_dwarf, NULL, 0, 0, NULL, 0)) {
    if (found_dwarf) {
      *pd->found_dwarf = 1;
      *pd->fileline_fn = elf_fileline_fn;
    }
  }

  return 0;
}

int backtrace_initialize(struct backtrace_state *state, const char *filename,
                         int descriptor,
                         backtrace_error_callback error_callback, void *data,
                         fileline *fileline_fn) {
  int ret;
  int found_sym;
  int found_dwarf;
  fileline elf_fileline_fn = elf_nodebug;
  struct phdr_data pd;

  ret =
      elf_add(state, filename, descriptor, NULL, 0, 0, error_callback, data,
              &elf_fileline_fn, &found_sym, &found_dwarf, NULL, 1, 0, NULL, 0);
  if (!ret) return 0;

  pd.state = state;
  pd.error_callback = error_callback;
  pd.data = data;
  pd.fileline_fn = &elf_fileline_fn;
  pd.found_sym = &found_sym;
  pd.found_dwarf = &found_dwarf;
  pd.exe_filename = filename;
  pd.exe_descriptor = ret < 0 ? descriptor : -1;

  dl_iterate_phdr(phdr_callback, (void *)&pd);

  if (!state->threaded) {
    if (found_sym)
      state->syminfo_fn = elf_syminfo;
    else if (state->syminfo_fn == NULL)
      state->syminfo_fn = elf_nosyms;
  } else {
    if (found_sym)
      backtrace_atomic_store_pointer(&state->syminfo_fn, elf_syminfo);
    else
      (void)__sync_bool_compare_and_swap(&state->syminfo_fn, NULL, elf_nosyms);
  }

  if (!state->threaded)
    *fileline_fn = state->fileline_fn;
  else
    *fileline_fn = backtrace_atomic_load_pointer(&state->fileline_fn);

  if (*fileline_fn == NULL || *fileline_fn == elf_nodebug)
    *fileline_fn = elf_fileline_fn;

  return 1;
}

// mmapio.c:
#include <errno.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <unistd.h>

#ifndef HAVE_DECL_GETPAGESIZE
extern int getpagesize(void);
#endif

#ifndef MAP_FAILED
#define MAP_FAILED ((void *)-1)
#endif

int backtrace_get_view(struct backtrace_state *state ATTRIBUTE_UNUSED,
                       int descriptor, off_t offset, uint64_t size,
                       backtrace_error_callback error_callback, void *data,
                       struct backtrace_view *view) {
  size_t pagesize;
  unsigned int inpage;
  off_t pageoff;
  void *map;

  if ((uint64_t)(size_t)size != size) {
    error_callback(data, "file size too large", 0);
    return 0;
  }

  pagesize = getpagesize();
  inpage = offset % pagesize;
  pageoff = offset - inpage;

  size += inpage;
  size = (size + (pagesize - 1)) & ~(pagesize - 1);

  map = mmap(NULL, size, PROT_READ, MAP_PRIVATE, descriptor, pageoff);
  if (map == MAP_FAILED) {
    error_callback(data, "mmap", errno);
    return 0;
  }

  view->data = (char *)map + inpage;
  view->base = map;
  view->len = size;

  return 1;
}

void backtrace_release_view(struct backtrace_state *state ATTRIBUTE_UNUSED,
                            struct backtrace_view *view,
                            backtrace_error_callback error_callback,
                            void *data) {
  union {
    const void *cv;
    void *v;
  } const_cast;

  const_cast.cv = view->base;
  if (munmap(const_cast.v, view->len) < 0)
    error_callback(data, "munmap", errno);
}

// mmap.c:
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <unistd.h>

#ifndef HAVE_DECL_GETPAGESIZE
extern int getpagesize(void);
#endif

#ifndef MAP_ANONYMOUS
#define MAP_ANONYMOUS MAP_ANON
#endif

#ifndef MAP_FAILED
#define MAP_FAILED ((void *)-1)
#endif

struct backtrace_freelist_struct {
  struct backtrace_freelist_struct *next;

  size_t size;
};

static void backtrace_free_locked(struct backtrace_state *state, void *addr,
                                  size_t size) {
  if (size >= sizeof(struct backtrace_freelist_struct)) {
    size_t c;
    struct backtrace_freelist_struct **ppsmall;
    struct backtrace_freelist_struct **pp;
    struct backtrace_freelist_struct *p;

    c = 0;
    ppsmall = NULL;
    for (pp = &state->freelist; *pp != NULL; pp = &(*pp)->next) {
      if (ppsmall == NULL || (*pp)->size < (*ppsmall)->size) ppsmall = pp;
      ++c;
    }
    if (c >= 16) {
      if (size <= (*ppsmall)->size) return;
      *ppsmall = (*ppsmall)->next;
    }

    p = (struct backtrace_freelist_struct *)addr;
    p->next = state->freelist;
    p->size = size;
    state->freelist = p;
  }
}

void *backtrace_alloc(struct backtrace_state *state, size_t size,
                      backtrace_error_callback error_callback, void *data) {
  void *ret;
  int locked;
  struct backtrace_freelist_struct **pp;
  size_t pagesize;
  size_t asksize;
  void *page;

  ret = NULL;

  if (!state->threaded)
    locked = 1;
  else
    locked = __sync_lock_test_and_set(&state->lock_alloc, 1) == 0;

  if (locked) {
    for (pp = &state->freelist; *pp != NULL; pp = &(*pp)->next) {
      if ((*pp)->size >= size) {
        struct backtrace_freelist_struct *p;

        p = *pp;
        *pp = p->next;

        size = (size + 7) & ~(size_t)7;
        if (size < p->size)
          backtrace_free_locked(state, (char *)p + size, p->size - size);

        ret = (void *)p;

        break;
      }
    }

    if (state->threaded) __sync_lock_release(&state->lock_alloc);
  }

  if (ret == NULL) {
    pagesize = getpagesize();
    asksize = (size + pagesize - 1) & ~(pagesize - 1);
    page = mmap(NULL, asksize, PROT_READ | PROT_WRITE,
                MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
    if (page == MAP_FAILED) {
      if (error_callback) error_callback(data, "mmap", errno);
    } else {
      size = (size + 7) & ~(size_t)7;
      if (size < asksize)
        backtrace_free(state, (char *)page + size, asksize - size,
                       error_callback, data);

      ret = page;
    }
  }

  return ret;
}

void backtrace_free(struct backtrace_state *state, void *addr, size_t size,
                    backtrace_error_callback error_callback ATTRIBUTE_UNUSED,
                    void *data ATTRIBUTE_UNUSED) {
  int locked;

  if (size >= 16 * 4096) {
    size_t pagesize;

    pagesize = getpagesize();
    if (((uintptr_t)addr & (pagesize - 1)) == 0 &&
        (size & (pagesize - 1)) == 0) {
      if (munmap(addr, size) == 0) return;
    }
  }

  if (!state->threaded)
    locked = 1;
  else
    locked = __sync_lock_test_and_set(&state->lock_alloc, 1) == 0;

  if (locked) {
    backtrace_free_locked(state, addr, size);

    if (state->threaded) __sync_lock_release(&state->lock_alloc);
  }
}

void *backtrace_vector_grow(struct backtrace_state *state, size_t size,
                            backtrace_error_callback error_callback, void *data,
                            struct backtrace_vector *vec) {
  void *ret;

  if (size > vec->alc) {
    size_t pagesize;
    size_t alc;
    void *base;

    pagesize = getpagesize();
    alc = vec->size + size;
    if (vec->size == 0)
      alc = 16 * size;
    else if (alc < pagesize) {
      alc *= 2;
      if (alc > pagesize) alc = pagesize;
    } else {
      alc *= 2;
      alc = (alc + pagesize - 1) & ~(pagesize - 1);
    }
    base = backtrace_alloc(state, alc, error_callback, data);
    if (base == NULL) return NULL;
    if (vec->base != NULL) {
      memcpy(base, vec->base, vec->size);
      backtrace_free(state, vec->base, vec->size + vec->alc, error_callback,
                     data);
    }
    vec->base = base;
    vec->alc = alc - vec->size;
  }

  ret = (char *)vec->base + vec->size;
  vec->size += size;
  vec->alc -= size;
  return ret;
}

void *backtrace_vector_finish(struct backtrace_state *state ATTRIBUTE_UNUSED,
                              struct backtrace_vector *vec,
                              backtrace_error_callback error_callback
                                  ATTRIBUTE_UNUSED,
                              void *data ATTRIBUTE_UNUSED) {
  void *ret;

  ret = vec->base;
  vec->base = (char *)vec->base + vec->size;
  vec->size = 0;
  return ret;
}

int backtrace_vector_release(struct backtrace_state *state,
                             struct backtrace_vector *vec,
                             backtrace_error_callback error_callback,
                             void *data) {
  size_t size;
  size_t alc;
  size_t aligned;

  size = vec->size;
  alc = vec->alc;
  aligned = (size + 7) & ~(size_t)7;
  alc -= aligned - size;

  backtrace_free(state, (char *)vec->base + aligned, alc, error_callback, data);
  vec->alc = 0;
  if (vec->size == 0) vec->base = NULL;
  return 1;
}