module strconv

import math

fn (d Dec64) get_string_64(neg bool, i_n_digit int, i_pad_digit int) string {
	mut n_digit := i_n_digit + 1
	pad_digit := i_pad_digit + 1
	mut out := d.m
	mut d_exp := d.e
	// mut out_len      := decimal_len_64(out)
	mut out_len := dec_digits(out)
	out_len_original := out_len

	mut fw_zeros := 0
	if pad_digit > out_len {
		fw_zeros = pad_digit - out_len
	}

	mut buf := []u8{len: (out_len + 6 + 1 + 1 + fw_zeros)} // sign + mant_len + . +  e + e_sign + exp_len(2) + \0}
	mut i := 0

	if neg {
		#buf.arr.arr[i.val] = '-'.charCodeAt()
		i++
	}

	mut disp := 0
	if out_len <= 1 {
		disp = 1
	}

	// rounding last used digit
	if n_digit < out_len {
		// println("out:[$out]")
		out += ten_pow_table_64[out_len - n_digit - 1] * 5 // round to up
		out /= ten_pow_table_64[out_len - n_digit]
		// println("out1:[$out] ${d.m / ten_pow_table_64[out_len - n_digit ]}")
		if d.m / ten_pow_table_64[out_len - n_digit] < out {
			d_exp++
			n_digit++
		}

		// println("cmp: ${d.m/ten_pow_table_64[out_len - n_digit ]} ${out/ten_pow_table_64[out_len - n_digit ]}")

		out_len = n_digit
		// println("orig: ${out_len_original} new len: ${out_len} out:[$out]")
	}

	y := i + out_len
	mut x := 0
	for x < (out_len - disp - 1) {
		#buf.arr.arr[y.val - x.val].val = '0'.charCodeAt() + Number(out.valueOf() % 10n)

		out /= 10
		i++
		x++
	}

	// no decimal digits needed, end here
	if i_n_digit == 0 {
		res := ''
		#buf.arr.arr.forEach((it) => it.val == 0 ? res.str : res.str += String.fromCharCode(it.val))

		return res
	}

	if out_len >= 1 {
		buf[y - x] = `.`
		x++
		i++
	}

	if y - x >= 0 {
		#buf.arr.arr[y.val - x.val].val = '0'.charCodeAt() + Number(out.valueOf() % 10n)
		i++
	}

	for fw_zeros > 0 {
		#buf.arr.arr[i.val].val = '0'.charCodeAt()
		i++
		fw_zeros--
	}

	#buf.arr.arr[i.val].val = 'e'.charCodeAt()
	i++

	mut exp := d_exp + out_len_original - 1
	if exp < 0 {
		#buf.arr.arr[i.val].val = '-'.charCodeAt()
		i++
		exp = -exp
	} else {
		#buf.arr.arr[i.val].val = '+'.charCodeAt()
		i++
	}

	// Always print at least two digits to match strconv's formatting.
	d2 := exp % 10
	exp /= 10
	d1 := exp % 10
	_ := d1
	_ := d2
	d0 := exp / 10
	if d0 > 0 {
		#buf.arr.arr[i].val = '0'.charCodeAt() + d0.val
		i++
	}
	#buf.arr.arr[i].val = '0'.charCodeAt() + d1.val
	i++
	#buf.arr.arr[i].val = '0' + d2.val
	i++
	#buf.arr.arr[i].val = 0

	res := ''
	#buf.arr.arr.forEach((it) => it.val == 0 ? res.str : res.str += String.fromCharCode(it.val))

	return res
}

fn f64_to_decimal_exact_int(i_mant u64, exp u64) (Dec64, bool) {
	mut d := Dec64{}
	e := exp - bias64
	if e > mantbits64 {
		return d, false
	}
	shift := mantbits64 - e
	mant := i_mant | u64(0x0010_0000_0000_0000) // implicit 1
	// mant  := i_mant | (1 << mantbits64) // implicit 1
	d.m = mant >> shift
	if (d.m << shift) != mant {
		return d, false
	}

	for (d.m % 10) == 0 {
		d.m /= 10
		d.e++
	}
	return d, true
}

fn f64_to_decimal(mant u64, exp u64) Dec64 {
	mut e2 := 0
	mut m2 := u64(0)
	if exp == 0 {
		// We subtract 2 so that the bounds computation has
		// 2 additional bits.
		e2 = 1 - bias64 - int(mantbits64) - 2
		m2 = mant
	} else {
		e2 = int(exp) - bias64 - int(mantbits64) - 2
		m2 = (u64(1) << mantbits64) | mant
	}
	even := (m2 & 1) == 0
	accept_bounds := even

	// Step 2: Determine the interval of valid decimal representations.
	mv := u64(4 * m2)
	mm_shift := bool_to_u64(mant != 0 || exp <= 1)

	// Step 3: Convert to a decimal power base uing 128-bit arithmetic.
	mut vr := u64(0)
	mut vp := u64(0)
	mut vm := u64(0)
	mut e10 := 0
	mut vm_is_trailing_zeros := false
	mut vr_is_trailing_zeros := false

	if e2 >= 0 {
		// This expression is slightly faster than max(0, log10Pow2(e2) - 1).
		q := log10_pow2(e2) - bool_to_u32(e2 > 3)
		e10 = int(q)
		k := pow5_inv_num_bits_64 + pow5_bits(int(q)) - 1
		i := -e2 + int(q) + k

		mul := pow5_inv_split_64[q]
		vr = mul_shift_64(u64(4) * m2, mul, i)
		vp = mul_shift_64(u64(4) * m2 + u64(2), mul, i)
		vm = mul_shift_64(u64(4) * m2 - u64(1) - mm_shift, mul, i)
		if q <= 21 {
			// This should use q <= 22, but I think 21 is also safe.
			// Smaller values may still be safe, but it's more
			// difficult to reason about them. Only one of mp, mv,
			// and mm can be a multiple of 5, if any.
			if mv % 5 == 0 {
				vr_is_trailing_zeros = multiple_of_power_of_five_64(mv, q)
			} else if accept_bounds {
				// Same as min(e2 + (^mm & 1), pow5Factor64(mm)) >= q
				// <=> e2 + (^mm & 1) >= q && pow5Factor64(mm) >= q
				// <=> true && pow5Factor64(mm) >= q, since e2 >= q.
				vm_is_trailing_zeros = multiple_of_power_of_five_64(mv - 1 - mm_shift,
					q)
			} else if multiple_of_power_of_five_64(mv + 2, q) {
				vp--
			}
		}
	} else {
		// This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
		q := log10_pow5(-e2) - bool_to_u32(-e2 > 1)
		e10 = int(q) + e2
		i := -e2 - int(q)
		k := pow5_bits(i) - pow5_num_bits_64
		j := int(q) - k
		mul := pow5_split_64[i]
		vr = mul_shift_64(u64(4) * m2, mul, j)
		vp = mul_shift_64(u64(4) * m2 + u64(2), mul, j)
		vm = mul_shift_64(u64(4) * m2 - u64(1) - mm_shift, mul, j)
		if q <= 1 {
			// {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
			// mv = 4 * m2, so it always has at least two trailing 0 bits.
			vr_is_trailing_zeros = true
			if accept_bounds {
				// mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
				vm_is_trailing_zeros = (mm_shift == 1)
			} else {
				// mp = mv + 2, so it always has at least one trailing 0 bit.
				vp--
			}
		} else if q < 63 { // TODO(ulfjack/cespare): Use a tighter bound here.
			// We need to compute min(ntz(mv), pow5Factor64(mv) - e2) >= q - 1
			// <=> ntz(mv) >= q - 1 && pow5Factor64(mv) - e2 >= q - 1
			// <=> ntz(mv) >= q - 1 (e2 is negative and -e2 >= q)
			// <=> (mv & ((1 << (q - 1)) - 1)) == 0
			// We also need to make sure that the left shift does not overflow.
			vr_is_trailing_zeros = multiple_of_power_of_two_64(mv, q - 1)
		}
	}

	// Step 4: Find the shortest decimal representation
	// in the interval of valid representations.
	mut removed := 0
	mut last_removed_digit := u8(0)
	mut out := u64(0)
	// On average, we remove ~2 digits.
	if vm_is_trailing_zeros || vr_is_trailing_zeros {
		// General case, which happens rarely (~0.7%).
		for {
			vp_div_10 := vp / 10
			vm_div_10 := vm / 10
			if vp_div_10 <= vm_div_10 {
				break
			}
			vm_mod_10 := vm % 10
			vr_div_10 := vr / 10
			vr_mod_10 := vr % 10
			vm_is_trailing_zeros = vm_is_trailing_zeros && vm_mod_10 == 0
			vr_is_trailing_zeros = vr_is_trailing_zeros && (last_removed_digit == 0)
			last_removed_digit = u8(vr_mod_10)
			vr = vr_div_10
			vp = vp_div_10
			vm = vm_div_10
			removed++
		}
		if vm_is_trailing_zeros {
			for {
				vm_div_10 := vm / 10
				vm_mod_10 := vm % 10
				if vm_mod_10 != 0 {
					break
				}
				vp_div_10 := vp / 10
				vr_div_10 := vr / 10
				vr_mod_10 := vr % 10
				vr_is_trailing_zeros = vr_is_trailing_zeros && (last_removed_digit == 0)
				last_removed_digit = u8(vr_mod_10)
				vr = vr_div_10
				vp = vp_div_10
				vm = vm_div_10
				removed++
			}
		}
		if vr_is_trailing_zeros && (last_removed_digit == 5) && (vr % 2) == 0 {
			// Round even if the exact number is .....50..0.
			last_removed_digit = 4
		}
		out = vr
		// We need to take vr + 1 if vr is outside bounds
		// or we need to round up.
		if (vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5 {
			out++
		}
	} else {
		// Specialized for the common case (~99.3%).
		// Percentages below are relative to this.
		mut round_up := false
		for vp / 100 > vm / 100 {
			// Optimization: remove two digits at a time (~86.2%).
			round_up = (vr % 100) >= 50
			vr /= 100
			vp /= 100
			vm /= 100
			removed += 2
		}
		// Loop iterations below (approximately), without optimization above:
		// 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
		// Loop iterations below (approximately), with optimization above:
		// 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
		for vp / 10 > vm / 10 {
			round_up = (vr % 10) >= 5
			vr /= 10
			vp /= 10
			vm /= 10
			removed++
		}
		// We need to take vr + 1 if vr is outside bounds
		// or we need to round up.
		out = vr + bool_to_u64(vr == vm || round_up)
	}

	return Dec64{
		m: out
		e: e10 + removed
	}
}

//=============================================================================
// String Functions
//=============================================================================

// f64_to_str return a string in scientific notation with max n_digit after the dot
pub fn f64_to_str(f f64, n_digit int) string {
	u := math.f64_bits(f)
	neg := (u >> (mantbits64 + expbits64)) != 0
	mant := u & ((u64(1) << mantbits64) - u64(1))
	exp := (u >> mantbits64) & ((u64(1) << expbits64) - u64(1))
	// println("s:${neg} mant:${mant} exp:${exp} float:${f} byte:${u1.u:016lx}")

	// Exit early for easy cases.
	if (exp == maxexp64) || (exp == 0 && mant == 0) {
		return get_string_special(neg, exp == 0, mant == 0)
	}

	mut d, ok := f64_to_decimal_exact_int(mant, exp)
	if !ok {
		// println("to_decimal")
		d = f64_to_decimal(mant, exp)
	}
	// println("${d.m} ${d.e}")
	return d.get_string_64(neg, n_digit, 0)
}