// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module builtin import strings // array is a struct used for denoting array types in V pub struct array { pub: element_size int // size in bytes of one element in the array. pub mut: data voidptr len int // length of the array. cap int // capacity of the array. } // array.data uses a void pointer, which allows implementing arrays without generics and without generating // extra code for every type. // Internal function, used by V (`nums := []int`) fn __new_array(mylen int, cap int, elm_size int) array { cap_ := if cap < mylen { mylen } else { cap } arr := array{ element_size: elm_size data: vcalloc(cap_ * elm_size) len: mylen cap: cap_ } return arr } fn __new_array_with_default(mylen int, cap int, elm_size int, val voidptr) array { cap_ := if cap < mylen { mylen } else { cap } mut arr := array{ element_size: elm_size data: vcalloc(cap_ * elm_size) len: mylen cap: cap_ } if val != 0 { for i in 0 .. arr.len { unsafe { arr.set_unsafe(i, val) } } } return arr } fn __new_array_with_array_default(mylen int, cap int, elm_size int, val array) array { cap_ := if cap < mylen { mylen } else { cap } mut arr := array{ element_size: elm_size data: vcalloc(cap_ * elm_size) len: mylen cap: cap_ } for i in 0 .. arr.len { val_clone := val.clone() unsafe { arr.set_unsafe(i, &val_clone) } } return arr } // Private function, used by V (`nums := [1, 2, 3]`) fn new_array_from_c_array(len int, cap int, elm_size int, c_array voidptr) array { cap_ := if cap < len { len } else { cap } arr := array{ element_size: elm_size data: vcalloc(cap_ * elm_size) len: len cap: cap_ } // TODO Write all memory functions (like memcpy) in V unsafe { C.memcpy(arr.data, c_array, len * elm_size) } return arr } // Private function, used by V (`nums := [1, 2, 3] !`) fn new_array_from_c_array_no_alloc(len int, cap int, elm_size int, c_array voidptr) array { arr := array{ element_size: elm_size data: c_array len: len cap: cap } return arr } // Private function. Doubles array capacity if needed. [inline] fn (mut a array) ensure_cap(required int) { if required <= a.cap { return } mut cap := if a.cap > 0 { a.cap } else { 2 } for required > cap { cap *= 2 } new_size := cap * a.element_size mut new_data := byteptr(0) if a.cap > 0 { new_data = v_realloc(a.data, new_size) } else { new_data = vcalloc(new_size) } a.data = new_data a.cap = cap } // repeat returns a new array with the given array elements repeated given times. pub fn (a array) repeat(count int) array { if count < 0 { panic('array.repeat: count is negative: $count') } mut size := count * a.len * a.element_size if size == 0 { size = a.element_size } arr := array{ element_size: a.element_size data: vcalloc(size) len: count * a.len cap: count * a.len } size_of_array := int(sizeof(array)) for i in 0 .. count { if a.len > 0 && a.element_size == size_of_array { ary := array{} unsafe { C.memcpy(&ary, a.data, size_of_array) } ary_clone := ary.clone() unsafe { C.memcpy(arr.get_unsafe(i * a.len), &ary_clone, a.len * a.element_size) } } else { unsafe { C.memcpy(arr.get_unsafe(i * a.len), byteptr(a.data), a.len * a.element_size) } } } return arr } // sort sorts array in-place using given `compare` function as comparator. pub fn (mut a array) sort_with_compare(compare voidptr) { C.qsort(mut a.data, a.len, a.element_size, compare) } // insert inserts a value in the array at index `i` pub fn (mut a array) insert(i int, val voidptr) { $if !no_bounds_checking ? { if i < 0 || i > a.len { panic('array.insert: index out of range (i == $i, a.len == $a.len)') } } a.ensure_cap(a.len + 1) unsafe { C.memmove(a.get_unsafe(i + 1), a.get_unsafe(i), (a.len - i) * a.element_size) a.set_unsafe(i, val) } a.len++ } // insert_many inserts many values into the array from index `i`. pub fn (mut a array) insert_many(i int, val voidptr, size int) { $if !no_bounds_checking ? { if i < 0 || i > a.len { panic('array.insert_many: index out of range (i == $i, a.len == $a.len)') } } a.ensure_cap(a.len + size) elem_size := a.element_size unsafe { iptr := a.get_unsafe(i) C.memmove(a.get_unsafe(i + size), iptr, (a.len - i) * elem_size) C.memcpy(iptr, val, size * elem_size) } a.len += size } // prepend prepends one value to the array. pub fn (mut a array) prepend(val voidptr) { a.insert(0, val) } // prepend_many prepends another array to this array. pub fn (mut a array) prepend_many(val voidptr, size int) { a.insert_many(0, val, size) } // delete deletes array element at index `i`. pub fn (mut a array) delete(i int) { $if !no_bounds_checking ? { if i < 0 || i >= a.len { panic('array.delete: index out of range (i == $i, a.len == $a.len)') } } // NB: if a is [12,34], a.len = 2, a.delete(0) // should move (2-0-1) elements = 1 element (the 34) forward unsafe { C.memmove(a.get_unsafe(i), a.get_unsafe(i + 1), (a.len - i - 1) * a.element_size) } a.len-- } // clear clears the array without deallocating the allocated data. pub fn (mut a array) clear() { a.len = 0 } // trim trims the array length to "index" without modifying the allocated data. If "index" is greater // than len nothing will be changed. pub fn (mut a array) trim(index int) { if index < a.len { a.len = index } } // we manually inline this for single operations for performance without -prod [inline] [unsafe] fn (a array) get_unsafe(i int) voidptr { unsafe { return byteptr(a.data) + i * a.element_size } } // Private function. Used to implement array[] operator. fn (a array) get(i int) voidptr { $if !no_bounds_checking ? { if i < 0 || i >= a.len { panic('array.get: index out of range (i == $i, a.len == $a.len)') } } unsafe { return byteptr(a.data) + i * a.element_size } } // first returns the first element of the array. pub fn (a array) first() voidptr { $if !no_bounds_checking ? { if a.len == 0 { panic('array.first: array is empty') } } return a.data } // last returns the last element of the array. pub fn (a array) last() voidptr { $if !no_bounds_checking ? { if a.len == 0 { panic('array.last: array is empty') } } unsafe { return byteptr(a.data) + (a.len - 1) * a.element_size } } // pop returns the last element of the array, and removes it. pub fn (mut a array) pop() voidptr { // in a sense, this is the opposite of `a << x` $if !no_bounds_checking ? { if a.len == 0 { panic('array.pop: array is empty') } } new_len := a.len - 1 last_elem := unsafe { byteptr(a.data) + (new_len) * a.element_size } a.len = new_len // NB: a.cap is not changed here *on purpose*, so that // further << ops on that array will be more efficient. return memdup(last_elem, a.element_size) } // delete_last efficiently deletes the last element of the array. pub fn (mut a array) delete_last() { // copy pasting code for performance $if !no_bounds_checking ? { if a.len == 0 { panic('array.pop: array is empty') } } a.len-- } // slice returns an array using the same buffer as original array // but starting from the `start` element and ending with the element before // the `end` element of the original array with the length and capacity // set to the number of the elements in the slice. fn (a array) slice(start int, _end int) array { mut end := _end $if !no_bounds_checking ? { if start > end { panic('array.slice: invalid slice index ($start > $end)') } if end > a.len { panic('array.slice: slice bounds out of range ($end >= $a.len)') } if start < 0 { panic('array.slice: slice bounds out of range ($start < 0)') } } mut data := byteptr(0) unsafe { data = byteptr(a.data) + start * a.element_size } l := end - start res := array{ element_size: a.element_size data: data len: l cap: l } return res } // used internally for [2..4] fn (a array) slice2(start int, _end int, end_max bool) array { end := if end_max { a.len } else { _end } return a.slice(start, end) } // clone_static returns an independent copy of a given array // It should be used only in -autofree generated code. fn (a array) clone_static() array { return a.clone() } // clone returns an independent copy of a given array. pub fn (a &array) clone() array { mut size := a.cap * a.element_size if size == 0 { size++ } mut arr := array{ element_size: a.element_size data: vcalloc(size) len: a.len cap: a.cap } // Recursively clone-generated elements if array element is array type size_of_array := int(sizeof(array)) if a.element_size == size_of_array { for i in 0 .. a.len { ar := array{} unsafe { C.memcpy(&ar, a.get_unsafe(i), size_of_array) } ar_clone := ar.clone() unsafe { arr.set_unsafe(i, &ar_clone) } } } else { if !isnil(a.data) { unsafe { C.memcpy(byteptr(arr.data), a.data, a.cap * a.element_size) } } } return arr } fn (a &array) slice_clone(start int, _end int) array { mut end := _end $if !no_bounds_checking ? { if start > end { panic('array.slice: invalid slice index ($start > $end)') } if end > a.len { panic('array.slice: slice bounds out of range ($end >= $a.len)') } if start < 0 { panic('array.slice: slice bounds out of range ($start < 0)') } } mut data := byteptr(0) unsafe { data = byteptr(a.data) + start * a.element_size } l := end - start res := array{ element_size: a.element_size data: data len: l cap: l } return res.clone() } // we manually inline this for single operations for performance without -prod [inline] [unsafe] fn (mut a array) set_unsafe(i int, val voidptr) { unsafe { C.memcpy(byteptr(a.data) + a.element_size * i, val, a.element_size) } } // Private function. Used to implement assigment to the array element. fn (mut a array) set(i int, val voidptr) { $if !no_bounds_checking ? { if i < 0 || i >= a.len { panic('array.set: index out of range (i == $i, a.len == $a.len)') } } unsafe { C.memcpy(byteptr(a.data) + a.element_size * i, val, a.element_size) } } fn (mut a array) push(val voidptr) { a.ensure_cap(a.len + 1) unsafe { C.memmove(byteptr(a.data) + a.element_size * a.len, val, a.element_size) } a.len++ } // `val` is array.data // TODO make private, right now it's used by strings.Builder pub fn (mut a3 array) push_many(val voidptr, size int) { if a3.data == val && !isnil(a3.data) { // handle `arr << arr` copy := a3.clone() a3.ensure_cap(a3.len + size) unsafe { // C.memcpy(a.data, copy.data, copy.element_size * copy.len) C.memcpy(a3.get_unsafe(a3.len), copy.data, a3.element_size * size) } } else { a3.ensure_cap(a3.len + size) if !isnil(a3.data) && !isnil(val) { unsafe { C.memcpy(a3.get_unsafe(a3.len), val, a3.element_size * size) } } } a3.len += size } // reverse_in_place reverses existing array data, modifying original array. pub fn (mut a array) reverse_in_place() { if a.len < 2 { return } unsafe { mut tmp_value := malloc(a.element_size) for i in 0 .. a.len / 2 { C.memcpy(tmp_value, byteptr(a.data) + i * a.element_size, a.element_size) C.memcpy(byteptr(a.data) + i * a.element_size, byteptr(a.data) + (a.len - 1 - i) * a.element_size, a.element_size) C.memcpy(byteptr(a.data) + (a.len - 1 - i) * a.element_size, tmp_value, a.element_size) } free(tmp_value) } } // reverse returns a new array with the elements of the original array in reverse order. pub fn (a array) reverse() array { if a.len < 2 { return a } mut arr := array{ element_size: a.element_size data: vcalloc(a.cap * a.element_size) len: a.len cap: a.cap } for i in 0 .. a.len { unsafe { arr.set_unsafe(i, a.get_unsafe(a.len - 1 - i)) } } return arr } // pub fn (a []int) free() { // free frees all memory occupied by the array. [unsafe] pub fn (a &array) free() { $if prealloc { return } // if a.is_slice { // return // } C.free(a.data) } // str returns a string representation of the array of strings // => '["a", "b", "c"]'. pub fn (a []string) str() string { mut sb := strings.new_builder(a.len * 3) sb.write('[') for i in 0 .. a.len { val := a[i] sb.write("'") sb.write(val) sb.write("'") if i < a.len - 1 { sb.write(', ') } } sb.write(']') return sb.str() } // hex returns a string with the hexadecimal representation // of the byte elements of the array. pub fn (b []byte) hex() string { mut hex := malloc(b.len * 2 + 1) mut dst_i := 0 for i in b { n0 := i >> 4 unsafe { hex[dst_i++] = if n0 < 10 { n0 + `0` } else { n0 + byte(87) } } n1 := i & 0xF unsafe { hex[dst_i++] = if n1 < 10 { n1 + `0` } else { n1 + byte(87) } } } unsafe { hex[dst_i] = `\0` return tos(hex, dst_i) } } // copy copies the `src` byte array elements to the `dst` byte array. // The number of the elements copied is the minimum of the length of both arrays. // Returns the number of elements copied. // TODO: implement for all types pub fn copy(dst []byte, src []byte) int { if dst.len > 0 && src.len > 0 { mut min := 0 min = if dst.len < src.len { dst.len } else { src.len } unsafe { C.memcpy(byteptr(dst.data), src[..min].data, dst.element_size * min) } return min } return 0 } // Private function. Comparator for int type. fn compare_ints(a &int, b &int) int { if *a < *b { return -1 } if *a > *b { return 1 } return 0 } fn compare_ints_reverse(a &int, b &int) int { if *a > *b { return -1 } if *a < *b { return 1 } return 0 } fn compare_u64s(a &u64, b &u64) int { if *a < *b { return -1 } if *a > *b { return 1 } return 0 } fn compare_u64s_reverse(a &u64, b &u64) int { if *a > *b { return -1 } if *a < *b { return 1 } return 0 } fn compare_floats(a &f64, b &f64) int { if *a < *b { return -1 } if *a > *b { return 1 } return 0 } fn compare_floats_reverse(a &f64, b &f64) int { if *a > *b { return -1 } if *a < *b { return 1 } return 0 } // sort sorts array of int in place in ascending order. pub fn (mut a []int) sort() { a.sort_with_compare(compare_ints) } // index returns the first index at which a given element can be found in the array // or -1 if the value is not found. pub fn (a []string) index(v string) int { for i in 0 .. a.len { if a[i] == v { return i } } return -1 } // reduce executes a given reducer function on each element of the array, // resulting in a single output value. pub fn (a []int) reduce(iter fn (int, int) int, accum_start int) int { mut accum_ := accum_start for i in a { accum_ = iter(accum_, i) } return accum_ } // grow_cap grows the array's capacity by `amount` elements. pub fn (mut a array) grow_cap(amount int) { a.ensure_cap(a.cap + amount) } // grow_len ensures that an array has a.len + amount of length pub fn (mut a array) grow_len(amount int) { a.ensure_cap(a.len + amount) a.len += amount } // array_eq checks if two arrays contain all the same elements in the same order. // []int == []int (also for: i64, f32, f64, byte, string) /* fn array_eq(a1, a2 []T) bool { if a1.len != a2.len { return false } for i in 0..a1.len { if a1[i] != a2[i] { return false } } return true } pub fn (a []int) eq(a2 []int) bool { return array_eq(a, a2) } pub fn (a []i64) eq(a2 []i64) bool { return array_eq(a, a2) } pub fn (a []byte) eq(a2 []byte) bool { return array_eq(a, a2) } pub fn (a []f32) eq(a2 []f32) bool { return array_eq(a, a2) } */ // eq checks if the arrays have the same elements or not. // TODO: make it work with all types. pub fn (a1 []string) eq(a2 []string) bool { // return array_eq(a, a2) if a1.len != a2.len { return false } for i in 0 .. a1.len { if a1[i] != a2[i] { return false } } return true } // compare_i64 for []f64 sort_with_compare() // sort []i64 with quicksort // usage : // mut x := [i64(100),10,70,28,92] // x.sort_with_compare(compare_i64) // println(x) // Sorted i64 Array // output: // [10, 28, 70, 92, 100] pub fn compare_i64(a &i64, b &i64) int { if *a < *b { return -1 } if *a > *b { return 1 } return 0 } // compare_f64 for []f64 sort_with_compare() // ref. compare_i64(...) pub fn compare_f64(a &f64, b &f64) int { if *a < *b { return -1 } if *a > *b { return 1 } return 0 } // compare_f32 for []f32 sort_with_compare() // ref. compare_i64(...) pub fn compare_f32(a &f32, b &f32) int { if *a < *b { return -1 } if *a > *b { return 1 } return 0 } // pointers returns a new array, where each element // is the address of the corresponding element in the array. pub fn (a array) pointers() []voidptr { mut res := []voidptr{} for i in 0 .. a.len { unsafe { res << a.get_unsafe(i) } } return res } // voidptr.vbytes() - makes a V []byte structure from a C style memory buffer. NB: the data is reused, NOT copied! [unsafe] pub fn (data voidptr) vbytes(len int) []byte { res := array{ element_size: 1 data: data len: len cap: len } return res } // byteptr.vbytes() - makes a V []byte structure from a C style memory buffer. NB: the data is reused, NOT copied! [unsafe] pub fn (data byteptr) vbytes(len int) []byte { return unsafe { voidptr(data).vbytes(len) } }