// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved.
// Use of this source code is governed by an MIT license
// that can be found in the LICENSE file.
module splitmix64

import rand.seed
import rand.constants

// SplitMix64RNG ported from http://xoshiro.di.unimi.it/splitmix64.c
pub struct SplitMix64RNG {
mut:
	state     u64 = seed.time_seed_64()
	has_extra bool
	extra     u32
}

// seed sets the seed of the accepting SplitMix64RNG to the given data
// in little-endian format (i.e. lower 32 bits are in [0] and higher 32 bits in [1]).
pub fn (mut rng SplitMix64RNG) seed(seed_data []u32) {
	if seed_data.len != 2 {
		eprintln('SplitMix64RNG needs 2 32-bit unsigned integers as the seed.')
		exit(1)
	}
	rng.state = seed_data[0] | (u64(seed_data[1]) << 32)
	rng.has_extra = false
}

// u32 updates the PRNG state and returns the next pseudorandom `u32`.
[inline]
pub fn (mut rng SplitMix64RNG) u32() u32 {
	if rng.has_extra {
		rng.has_extra = false
		return rng.extra
	}
	full_value := rng.u64()
	lower := u32(full_value & constants.lower_mask)
	upper := u32(full_value >> 32)
	rng.extra = upper
	rng.has_extra = true
	return lower
}

// u64 updates the PRNG state and returns the next pseudorandom `u64`.
[inline]
pub fn (mut rng SplitMix64RNG) u64() u64 {
	rng.state += (0x9e3779b97f4a7c15)
	mut z := rng.state
	z = (z ^ (z >> u64(30))) * 0xbf58476d1ce4e5b9
	z = (z ^ (z >> u64(27))) * 0x94d049bb133111eb
	return z ^ (z >> (31))
}

// u32n returns a pseudorandom `u32` less than `bound`.
[inline]
pub fn (mut rng SplitMix64RNG) u32n(bound u32) u32 {
	// This function is kept similar to the u64 version
	if bound == 0 {
		eprintln('max must be non-zero')
		exit(1)
	}
	threshold := -bound % bound
	for {
		r := rng.u32()
		if r >= threshold {
			return r % bound
		}
	}
	return u32(0)
}

// u64n returns a pseudorandom `u64` less than `bound`.
[inline]
pub fn (mut rng SplitMix64RNG) u64n(bound u64) u64 {
	// See pcg32.v for explanation of comment. This algorithm
	// existed before the refactoring.
	if bound == 0 {
		eprintln('max must be non-zero')
		exit(1)
	}
	threshold := -bound % bound
	for {
		r := rng.u64()
		if r >= threshold {
			return r % bound
		}
	}
	return u64(0)
}

// u32n returns a pseudorandom `u32` value that is guaranteed to be in range `[min, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) u32_in_range(min u32, max u32) u32 {
	if max <= min {
		eprintln('max must be greater than min')
		exit(1)
	}
	return min + rng.u32n(max - min)
}

// u64n returns a pseudorandom `u64` value that is guaranteed to be in range `[min, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) u64_in_range(min u64, max u64) u64 {
	if max <= min {
		eprintln('max must be greater than min')
		exit(1)
	}
	return min + rng.u64n(max - min)
}

// int returns a pseudorandom 32-bit (possibly negative) `int`.
[inline]
pub fn (mut rng SplitMix64RNG) int() int {
	return int(rng.u32())
}

// i64 returns a pseudorandom 64-bit (possibly negative) `i64`.
[inline]
pub fn (mut rng SplitMix64RNG) i64() i64 {
	return i64(rng.u64())
}

// int31 returns a positive pseudorandom 31-bit `int`.
[inline]
pub fn (mut rng SplitMix64RNG) int31() int {
	return int(rng.u32() & constants.u31_mask) // Set the 32nd bit to 0.
}

// int63 returns a positive pseudorandom 63-bit `i64`.
[inline]
pub fn (mut rng SplitMix64RNG) int63() i64 {
	return i64(rng.u64() & constants.u63_mask) // Set the 64th bit to 0.
}

// intn returns a pseudorandom `int` in range `[0, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) intn(max int) int {
	if max <= 0 {
		eprintln('max has to be positive.')
		exit(1)
	}
	return int(rng.u32n(u32(max)))
}

// i64n returns a pseudorandom `i64` in range `[0, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) i64n(max i64) i64 {
	if max <= 0 {
		eprintln('max has to be positive.')
		exit(1)
	}
	return i64(rng.u64n(u64(max)))
}

// int_in_range returns a pseudorandom `int` in range `[min, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) int_in_range(min int, max int) int {
	if max <= min {
		eprintln('max must be greater than min')
		exit(1)
	}
	// This supports negative ranges like [-10, -5) because the difference is positive
	return min + rng.intn(max - min)
}

// i64_in_range returns a pseudorandom `i64` in range `[min, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) i64_in_range(min i64, max i64) i64 {
	if max <= min {
		eprintln('max must be greater than min')
		exit(1)
	}
	return min + rng.i64n(max - min)
}

// f32 returns a pseudorandom `f32` value in range `[0, 1)`.
[inline]
pub fn (mut rng SplitMix64RNG) f32() f32 {
	return f32(rng.u32()) / constants.max_u32_as_f32
}

// f64 returns a pseudorandom `f64` value in range `[0, 1)`.
[inline]
pub fn (mut rng SplitMix64RNG) f64() f64 {
	return f64(rng.u64()) / constants.max_u64_as_f64
}

// f32n returns a pseudorandom `f32` value in range `[0, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) f32n(max f32) f32 {
	if max <= 0 {
		eprintln('max has to be positive.')
		exit(1)
	}
	return rng.f32() * max
}

// f64n returns a pseudorandom `f64` value in range `[0, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) f64n(max f64) f64 {
	if max <= 0 {
		eprintln('max has to be positive.')
		exit(1)
	}
	return rng.f64() * max
}

// f32_in_range returns a pseudorandom `f32` in range `[min, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) f32_in_range(min f32, max f32) f32 {
	if max <= min {
		eprintln('max must be greater than min')
		exit(1)
	}
	return min + rng.f32n(max - min)
}

// i64_in_range returns a pseudorandom `i64` in range `[min, max)`.
[inline]
pub fn (mut rng SplitMix64RNG) f64_in_range(min f64, max f64) f64 {
	if max <= min {
		eprintln('max must be greater than min')
		exit(1)
	}
	return min + rng.f64n(max - min)
}

// free should be called when the generator is no longer needed
[unsafe]
pub fn (mut rng SplitMix64RNG) free() {
	unsafe { free(rng) }
}