// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module rand import rand.util import rand.wyrand import time // Configuration struct for creating a new instance of the default RNG. pub struct PRNGConfigStruct { seed []u32 = util.time_seed_array(2) } __global ( default_rng &wyrand.WyRandRNG ) fn init() { default_rng = new_default({}) } // new_default returns a new instance of the default RNG. If the seed is not provided, the current time will be used to seed the instance. pub fn new_default(config PRNGConfigStruct) &wyrand.WyRandRNG { mut rng := &wyrand.WyRandRNG{} rng.seed(config.seed) return rng } // seed sets the given array of `u32` values as the seed for the `default_rng`. pub fn seed(seed []u32) { default_rng.seed(seed) } // u32() returns a uniformly distributed u32 in _[0, 232)_ pub fn u32() u32 { return default_rng.u32() } // u64() returns a uniformly distributed u64 in _[0, 264)_ pub fn u64() u64 { return default_rng.u64() } // u32n(max) returns a uniformly distributed pseudorandom 32-bit signed positive u32 in _[0, max)_ pub fn u32n(max u32) u32 { return default_rng.u32n(max) } // u64n(max) returns a uniformly distributed pseudorandom 64-bit signed positive u64 in _[0, max)_ pub fn u64n(max u64) u64 { return default_rng.u64n(max) } // u32_in_range(min, max) returns a uniformly distributed pseudorandom 32-bit unsigned u32 in _[min, max)_ pub fn u32_in_range(min u32, max u32) u32 { return default_rng.u32_in_range(min, max) } // u64_in_range(min, max) returns a uniformly distributed pseudorandom 64-bit unsigned u64 in _[min, max)_ pub fn u64_in_range(min u64, max u64) u64 { return default_rng.u64_in_range(min, max) } // int() returns a uniformly distributed pseudorandom 32-bit signed (possibly negative) int pub fn int() int { return default_rng.int() } // intn(max) returns a uniformly distributed pseudorandom 32-bit signed positive int in _[0, max)_ pub fn intn(max int) int { return default_rng.intn(max) } // int_in_range(min, max) returns a uniformly distributed pseudorandom // 32-bit signed int in [min, max). Both min and max can be negative, but we must have _min < max_. pub fn int_in_range(min int, max int) int { return default_rng.int_in_range(min, max) } // int31() returns a uniformly distributed pseudorandom 31-bit signed positive int pub fn int31() int { return default_rng.int31() } // i64() returns a uniformly distributed pseudorandom 64-bit signed (possibly negative) i64 pub fn i64() i64 { return default_rng.i64() } // i64n(max) returns a uniformly distributed pseudorandom 64-bit signed positive i64 in _[0, max)_ pub fn i64n(max i64) i64 { return default_rng.i64n(max) } // i64_in_range(min, max) returns a uniformly distributed pseudorandom 64-bit signed int in _[min, max)_ pub fn i64_in_range(min i64, max i64) i64 { return default_rng.i64_in_range(min, max) } // int63() returns a uniformly distributed pseudorandom 63-bit signed positive int pub fn int63() i64 { return default_rng.int63() } // f32() returns a uniformly distributed 32-bit floating point in _[0, 1)_ pub fn f32() f32 { return default_rng.f32() } // f64() returns a uniformly distributed 64-bit floating point in _[0, 1)_ pub fn f64() f64 { return default_rng.f64() } // f32n() returns a uniformly distributed 32-bit floating point in _[0, max)_ pub fn f32n(max f32) f32 { return default_rng.f32n(max) } // f64n() returns a uniformly distributed 64-bit floating point in _[0, max)_ pub fn f64n(max f64) f64 { return default_rng.f64n(max) } // f32_in_range(min, max) returns a uniformly distributed 32-bit floating point in _[min, max)_ pub fn f32_in_range(min f32, max f32) f32 { return default_rng.f32_in_range(min, max) } // f64_in_range(min, max) returns a uniformly distributed 64-bit floating point in _[min, max)_ pub fn f64_in_range(min f64, max f64) f64 { return default_rng.f64_in_range(min, max) } const ( chars = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' ) pub fn string(len int) string { mut buf := malloc(len) for i in 0 .. len { unsafe { buf[i] = chars[intn(chars.len)] } } return unsafe {buf.vstring_with_len(len)} } // rand.uuid_v4 generate a completely random UUID (v4) // See https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random) pub fn uuid_v4() string { buflen := 36 mut buf := malloc(37) mut i_buf := 0 mut x := u64(0) mut d := byte(0) for i_buf < buflen { mut c := 0 x = default_rng.u64() // do most of the bit manipulation at once: x &= 0x0F0F0F0F0F0F0F0F x += 0x3030303030303030 // write the ASCII codes to the buffer: for c < 8 && i_buf < buflen { d = byte(x) unsafe { buf[i_buf] = if d > 0x39 { d + 0x27 } else { d } } i_buf++ c++ x = x >> 8 } } // there are still some random bits in x: x = x >> 8 d = byte(x) unsafe { buf[19] = if d > 0x39 { d + 0x27 } else { d } buf[8] = `-` buf[13] = `-` buf[18] = `-` buf[23] = `-` buf[14] = `4` buf[buflen] = 0 } return unsafe {buf.vstring_with_len(buflen)} } const ( ulid_encoding = '0123456789ABCDEFGHJKMNPQRSTVWXYZ' ) // rand.ulid generates an Unique Lexicographically sortable IDentifier. // See https://github.com/ulid/spec . // NB: ULIDs can leak timing information, if you make them public, because // you can infer the rate at which some resource is being created, like // users or business transactions. // (https://news.ycombinator.com/item?id=14526173) pub fn ulid() string { return ulid_at_millisecond(time.utc().unix_time_milli()) } pub fn ulid_at_millisecond(unix_time_milli u64) string { buflen := 26 mut buf := malloc(27) mut t := unix_time_milli mut i := 9 for i >= 0 { unsafe { buf[i] = ulid_encoding[t & 0x1F] } t = t >> 5 i-- } // first rand set mut x := default_rng.u64() i = 10 for i < 19 { unsafe { buf[i] = ulid_encoding[x & 0x1F] } x = x >> 5 i++ } // second rand set x = default_rng.u64() for i < 26 { unsafe { buf[i] = ulid_encoding[x & 0x1F] } x = x >> 5 i++ } unsafe { buf[26] = 0 } return unsafe {buf.vstring_with_len(buflen)} }