module edwards25519 // extended_coordinates returns v in extended coordinates (X:Y:Z:T) where // x = X/Z, y = Y/Z, and xy = T/Z as in https://eprint.iacr.org/2008/522. fn (mut v Point) extended_coordinates() (Element, Element, Element, Element) { // This function is outlined to make the allocations inline in the caller // rather than happen on the heap. Don't change the style without making // sure it doesn't increase the inliner cost. mut e := []Element{len: 4} x, y, z, t := v.extended_coordinates_generic(mut e) return x, y, z, t } fn (mut v Point) extended_coordinates_generic(mut e []Element) (Element, Element, Element, Element) { check_initialized(v) x := e[0].set(v.x) y := e[1].set(v.y) z := e[2].set(v.z) t := e[3].set(v.t) return x, y, z, t } // Given k > 0, set s = s**(2*i). fn (mut s Scalar) pow2k(k int) { for i := 0; i < k; i++ { s.multiply(s, s) } } // set_extended_coordinates sets v = (X:Y:Z:T) in extended coordinates where // x = X/Z, y = Y/Z, and xy = T/Z as in https://eprint.iacr.org/2008/522. // // If the coordinates are invalid or don't represent a valid point on the curve, // set_extended_coordinates returns an error and the receiver is // unchanged. Otherwise, set_extended_coordinates returns v. fn (mut v Point) set_extended_coordinates(x Element, y Element, z Element, t Element) ?Point { if !is_on_curve(x, y, z, t) { return error('edwards25519: invalid point coordinates') } v.x.set(x) v.y.set(y) v.z.set(z) v.t.set(t) return v } fn is_on_curve(x Element, y Element, z Element, t Element) bool { mut lhs := Element{} mut rhs := Element{} mut xx := Element{} xx.square(x) mut yy := Element{} yy.square(y) mut zz := Element{} zz.square(z) // zz := new(Element).Square(Z) mut tt := Element{} tt.square(t) // tt := new(Element).Square(T) // -x² + y² = 1 + dx²y² // -(X/Z)² + (Y/Z)² = 1 + d(T/Z)² // -X² + Y² = Z² + dT² lhs.subtract(yy, xx) mut d := d_const rhs.multiply(d, tt) rhs.add(rhs, zz) if lhs.equal(rhs) != 1 { return false } // xy = T/Z // XY/Z² = T/Z // XY = TZ lhs.multiply(x, y) rhs.multiply(t, z) return lhs.equal(rhs) == 1 } // bytes_montgomery converts v to a point on the birationally-equivalent // Curve25519 Montgomery curve, and returns its canonical 32 bytes encoding // according to RFC 7748. // // Note that bytes_montgomery only encodes the u-coordinate, so v and -v encode // to the same value. If v is the identity point, bytes_montgomery returns 32 // zero bytes, analogously to the X25519 function. pub fn (mut v Point) bytes_montgomery() []u8 { // This function is outlined to make the allocations inline in the caller // rather than happen on the heap. mut buf := [32]u8{} return v.bytes_montgomery_generic(mut buf) } fn (mut v Point) bytes_montgomery_generic(mut buf [32]u8) []u8 { check_initialized(v) // RFC 7748, Section 4.1 provides the bilinear map to calculate the // Montgomery u-coordinate // // u = (1 + y) / (1 - y) // // where y = Y / Z. mut y := Element{} mut recip := Element{} mut u := Element{} y.multiply(v.y, y.invert(v.z)) // y = Y / Z recip.invert(recip.subtract(fe_one, &y)) // r = 1/(1 - y) u.multiply(u.add(fe_one, y), recip) // u = (1 + y)*r return copy_field_element(mut buf, mut u) } // mult_by_cofactor sets v = 8 * p, and returns v. pub fn (mut v Point) mult_by_cofactor(p Point) Point { check_initialized(p) mut result := ProjectiveP1{} mut pp := ProjectiveP2{} pp.from_p3(p) result.double(pp) pp.from_p1(result) result.double(pp) pp.from_p1(result) result.double(pp) return v.from_p1(result) } // invert sets s to the inverse of a nonzero scalar v, and returns s. // // If t is zero, invert returns zero. pub fn (mut s Scalar) invert(t Scalar) Scalar { // Uses a hardcoded sliding window of width 4. mut table := [8]Scalar{} mut tt := Scalar{} tt.multiply(t, t) table[0] = t for i := 0; i < 7; i++ { table[i + 1].multiply(table[i], tt) } // Now table = [t**1, t**3, t**7, t**11, t**13, t**15] // so t**k = t[k/2] for odd k // To compute the sliding window digits, use the following Sage script: // sage: import itertools // sage: def sliding_window(w,k): // ....: digits = [] // ....: while k > 0: // ....: if k % 2 == 1: // ....: kmod = k % (2**w) // ....: digits.append(kmod) // ....: k = k - kmod // ....: else: // ....: digits.append(0) // ....: k = k // 2 // ....: return digits // Now we can compute s roughly as follows: // sage: s = 1 // sage: for coeff in reversed(sliding_window(4,l-2)): // ....: s = s*s // ....: if coeff > 0 : // ....: s = s*t**coeff // This works on one bit at a time, with many runs of zeros. // The digits can be collapsed into [(count, coeff)] as follows: // sage: [(len(list(group)),d) for d,group in itertools.groupby(sliding_window(4,l-2))] // Entries of the form (k, 0) turn into pow2k(k) // Entries of the form (1, coeff) turn into a squaring and then a table lookup. // We can fold the squaring into the previous pow2k(k) as pow2k(k+1). s = table[1 / 2] s.pow2k(127 + 1) s.multiply(s, table[1 / 2]) s.pow2k(4 + 1) s.multiply(s, table[9 / 2]) s.pow2k(3 + 1) s.multiply(s, table[11 / 2]) s.pow2k(3 + 1) s.multiply(s, table[13 / 2]) s.pow2k(3 + 1) s.multiply(s, table[15 / 2]) s.pow2k(4 + 1) s.multiply(s, table[7 / 2]) s.pow2k(4 + 1) s.multiply(s, table[15 / 2]) s.pow2k(3 + 1) s.multiply(s, table[5 / 2]) s.pow2k(3 + 1) s.multiply(s, table[1 / 2]) s.pow2k(4 + 1) s.multiply(s, table[15 / 2]) s.pow2k(4 + 1) s.multiply(s, table[15 / 2]) s.pow2k(4 + 1) s.multiply(s, table[7 / 2]) s.pow2k(3 + 1) s.multiply(s, table[3 / 2]) s.pow2k(4 + 1) s.multiply(s, table[11 / 2]) s.pow2k(5 + 1) s.multiply(s, table[11 / 2]) s.pow2k(9 + 1) s.multiply(s, table[9 / 2]) s.pow2k(3 + 1) s.multiply(s, table[3 / 2]) s.pow2k(4 + 1) s.multiply(s, table[3 / 2]) s.pow2k(4 + 1) s.multiply(s, table[3 / 2]) s.pow2k(4 + 1) s.multiply(s, table[9 / 2]) s.pow2k(3 + 1) s.multiply(s, table[7 / 2]) s.pow2k(3 + 1) s.multiply(s, table[3 / 2]) s.pow2k(3 + 1) s.multiply(s, table[13 / 2]) s.pow2k(3 + 1) s.multiply(s, table[7 / 2]) s.pow2k(4 + 1) s.multiply(s, table[9 / 2]) s.pow2k(3 + 1) s.multiply(s, table[15 / 2]) s.pow2k(4 + 1) s.multiply(s, table[11 / 2]) return s } // multi_scalar_mult sets v = sum(scalars[i] * points[i]), and returns v. // // Execution time depends only on the lengths of the two slices, which must match. pub fn (mut v Point) multi_scalar_mult(scalars []Scalar, points []Point) Point { if scalars.len != points.len { panic('edwards25519: called multi_scalar_mult with different size inputs') } check_initialized(...points) mut sc := scalars.clone() // Proceed as in the single-base case, but share doublings // between each point in the multiscalar equation. // Build lookup tables for each point mut tables := []ProjLookupTable{len: points.len} for i, _ in tables { tables[i].from_p3(points[i]) } // Compute signed radix-16 digits for each scalar // digits := make([][64]int8, len(scalars)) mut digits := [][]i8{len: sc.len, init: []i8{len: 64, cap: 64}} for j, _ in digits { digits[j] = sc[j].signed_radix16() } // Unwrap first loop iteration to save computing 16*identity mut multiple := ProjectiveCached{} mut tmp1 := ProjectiveP1{} mut tmp2 := ProjectiveP2{} // Lookup-and-add the appropriate multiple of each input point for k, _ in tables { tables[k].select_into(mut multiple, digits[k][63]) tmp1.add(v, multiple) // tmp1 = v + x_(j,63)*Q in P1xP1 coords v.from_p1(tmp1) // update v } tmp2.from_p3(v) // set up tmp2 = v in P2 coords for next iteration for r := 62; r >= 0; r-- { tmp1.double(tmp2) // tmp1 = 2*(prev) in P1xP1 coords tmp2.from_p1(tmp1) // tmp2 = 2*(prev) in P2 coords tmp1.double(tmp2) // tmp1 = 4*(prev) in P1xP1 coords tmp2.from_p1(tmp1) // tmp2 = 4*(prev) in P2 coords tmp1.double(tmp2) // tmp1 = 8*(prev) in P1xP1 coords tmp2.from_p1(tmp1) // tmp2 = 8*(prev) in P2 coords tmp1.double(tmp2) // tmp1 = 16*(prev) in P1xP1 coords v.from_p1(tmp1) // v = 16*(prev) in P3 coords // Lookup-and-add the appropriate multiple of each input point for s, _ in tables { tables[s].select_into(mut multiple, digits[s][r]) tmp1.add(v, multiple) // tmp1 = v + x_(j,i)*Q in P1xP1 coords v.from_p1(tmp1) // update v } tmp2.from_p3(v) // set up tmp2 = v in P2 coords for next iteration } return v } // vartime_multiscalar_mult sets v = sum(scalars[i] * points[i]), and returns v. // // Execution time depends on the inputs. pub fn (mut v Point) vartime_multiscalar_mult(scalars []Scalar, points []Point) Point { if scalars.len != points.len { panic('edwards25519: called VarTimeMultiScalarMult with different size inputs') } check_initialized(...points) // Generalize double-base NAF computation to arbitrary sizes. // Here all the points are dynamic, so we only use the smaller // tables. // Build lookup tables for each point mut tables := []NafLookupTable5{len: points.len} for i, _ in tables { tables[i].from_p3(points[i]) } mut sc := scalars.clone() // Compute a NAF for each scalar // mut nafs := make([][256]int8, len(scalars)) mut nafs := [][]i8{len: sc.len, init: []i8{len: 256, cap: 256}} for j, _ in nafs { nafs[j] = sc[j].non_adjacent_form(5) } mut multiple := ProjectiveCached{} mut tmp1 := ProjectiveP1{} mut tmp2 := ProjectiveP2{} tmp2.zero() // Move from high to low bits, doubling the accumulator // at each iteration and checking whether there is a nonzero // coefficient to look up a multiple of. // // Skip trying to find the first nonzero coefficent, because // searching might be more work than a few extra doublings. // k == i, l == j for k := 255; k >= 0; k-- { tmp1.double(tmp2) for l, _ in nafs { if nafs[l][k] > 0 { v.from_p1(tmp1) tables[l].select_into(mut multiple, nafs[l][k]) tmp1.add(v, multiple) } else if nafs[l][k] < 0 { v.from_p1(tmp1) tables[l].select_into(mut multiple, -nafs[l][k]) tmp1.sub(v, multiple) } } tmp2.from_p1(tmp1) } v.from_p2(tmp2) return v }