// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module math const ( uvnan = u64(0x7FF8000000000001) uvinf = u64(0x7FF0000000000000) uvneginf = u64(0xFFF0000000000000) uvone = u64(0x3FF0000000000000) mask = 0x7FF shift = 64 - 11 - 1 bias = 1023 sign_mask = (u64(1)<<63) frac_mask = ((u64(1)<<u64(shift)) - u64(1)) ) // inf returns positive infinity if sign >= 0, negative infinity if sign < 0. pub fn inf(sign int) f64 { v := if sign >= 0 { uvinf } else { uvneginf } return f64_from_bits(v) } // nan returns an IEEE 754 ``not-a-number'' value. pub fn nan() f64 { return f64_from_bits(uvnan) } // is_nan reports whether f is an IEEE 754 ``not-a-number'' value. pub fn is_nan(f f64) bool { // IEEE 754 says that only NaNs satisfy f != f. // To avoid the floating-point hardware, could use: // x := f64_bits(f); // return u32(x>>shift)&mask == mask && x != uvinf && x != uvneginf return f != f } // is_inf reports whether f is an infinity, according to sign. // If sign > 0, is_inf reports whether f is positive infinity. // If sign < 0, is_inf reports whether f is negative infinity. // If sign == 0, is_inf reports whether f is either infinity. pub fn is_inf(f f64, sign int) bool { // Test for infinity by comparing against maximum float. // To avoid the floating-point hardware, could use: // x := f64_bits(f); // return sign >= 0 && x == uvinf || sign <= 0 && x == uvneginf; return (sign >= 0 && f > max_f64) || (sign <= 0 && f < -max_f64) } // NOTE: (joe-c) exponent notation is borked // normalize returns a normal number y and exponent exp // satisfying x == y × 2**exp. It assumes x is finite and non-zero. // pub fn normalize(x f64) (f64, int) { // smallest_normal := 2.2250738585072014e-308 // 2**-1022 // if abs(x) < smallest_normal { // return x * (1 << 52), -52 // } // return x, 0 // }