module builtin type FnExitCb = fn () fn C.atexit(f FnExitCb) int // exit terminates execution immediately and returns exit `code` to the shell. pub fn exit(code int) { C.exit(code) } fn vcommithash() string { return unsafe { tos5(&char(C.V_CURRENT_COMMIT_HASH)) } } // panic_debug private function that V uses for panics, -cg/-g is passed // recent versions of tcc print nicer backtraces automatically // NB: the duplication here is because tcc_backtrace should be called directly // inside the panic functions. fn panic_debug(line_no int, file string, mod string, fn_name string, s string) { // NB: the order here is important for a stabler test output // module is less likely to change than function, etc... // During edits, the line number will change most frequently, // so it is last $if freestanding { bare_panic(s) } $else { eprintln('================ V panic ================') eprintln(' module: $mod') eprintln(' function: ${fn_name}()') eprintln(' message: $s') eprintln(' file: $file:$line_no') eprintln(' v hash: $vcommithash()') eprintln('=========================================') $if exit_after_panic_message ? { C.exit(1) } $else { $if no_backtrace ? { C.exit(1) } $else { $if tinyc { $if panics_break_into_debugger ? { break_if_debugger_attached() } $else { C.tcc_backtrace(c'Backtrace') } C.exit(1) } print_backtrace_skipping_top_frames(1) $if panics_break_into_debugger ? { break_if_debugger_attached() } C.exit(1) } } } } pub fn panic_optional_not_set(s string) { panic('optional not set ($s)') } // panic prints a nice error message, then exits the process with exit code of 1. // It also shows a backtrace on most platforms. pub fn panic(s string) { $if freestanding { bare_panic(s) } $else { eprint('V panic: ') eprintln(s) eprintln('v hash: $vcommithash()') $if exit_after_panic_message ? { C.exit(1) } $else { $if no_backtrace ? { C.exit(1) } $else { $if tinyc { $if panics_break_into_debugger ? { break_if_debugger_attached() } $else { C.tcc_backtrace(c'Backtrace') } C.exit(1) } print_backtrace_skipping_top_frames(1) $if panics_break_into_debugger ? { break_if_debugger_attached() } C.exit(1) } } } } // eprintln prints a message with a line end, to stderr. Both stderr and stdout are flushed. pub fn eprintln(s string) { $if freestanding { // flushing is only a thing with C.FILE from stdio.h, not on the syscall level if s.str == 0 { bare_eprint(c'eprintln(NIL)\n', 14) } else { bare_eprint(s.str, u64(s.len)) bare_eprint(c'\n', 1) } } $else $if ios { if s.str == 0 { C.WrappedNSLog(c'eprintln(NIL)\n') } else { C.WrappedNSLog(s.str) } } $else { C.fflush(C.stdout) C.fflush(C.stderr) // eprintln is used in panics, so it should not fail at all $if android { if s.str == 0 { C.fprintf(C.stderr, c'eprintln(NIL)\n') } else { C.fprintf(C.stderr, c'%.*s\n', s.len, s.str) } } $else { if s.str == 0 { _ = C.write(2, c'eprintln(NIL)\n', 14) } else { _ = C.write(2, s.str, s.len) _ = C.write(2, c'\n', 1) } } C.fflush(C.stderr) } } // eprint prints a message to stderr. Both stderr and stdout are flushed. pub fn eprint(s string) { $if freestanding { // flushing is only a thing with C.FILE from stdio.h, not on the syscall level if s.str == 0 { bare_eprint(c'eprint(NIL)\n', 12) } else { bare_eprint(s.str, u64(s.len)) } } $else $if ios { // TODO: Implement a buffer as NSLog doesn't have a "print" if s.str == 0 { C.WrappedNSLog(c'eprint(NIL)') } else { C.WrappedNSLog(s.str) } } $else { C.fflush(C.stdout) C.fflush(C.stderr) $if android { if s.str == 0 { C.fprintf(C.stderr, c'eprint(NIL)') } else { C.fprintf(C.stderr, c'%.*s', s.len, s.str) } } $else { if s.str == 0 { _ = C.write(2, c'eprint(NIL)', 11) } else { _ = C.write(2, s.str, s.len) } } C.fflush(C.stderr) } } // print prints a message to stdout. Unlike `println` stdout is not automatically flushed. // A call to `flush()` will flush the output buffer to stdout. pub fn print(s string) { $if android { C.fprintf(C.stdout, c'%.*s', s.len, s.str) } $else $if ios { // TODO: Implement a buffer as NSLog doesn't have a "print" C.WrappedNSLog(s.str) } $else $if freestanding { bare_print(s.str, u64(s.len)) } $else { _ = C.write(1, s.str, s.len) } } /* #include "@VEXEROOT/vlib/darwin/darwin.m" fn C.nsstring2(s string) voidptr fn C.NSLog(x voidptr) #include fn C.asl_log(voidptr, voidptr, int, charptr) */ // println prints a message with a line end, to stdout. stdout is flushed. pub fn println(s string) { if s.str == 0 { $if android { C.fprintf(C.stdout, c'println(NIL)\n') } $else $if ios { C.WrappedNSLog(c'println(NIL)') } $else $if freestanding { bare_print(s.str, u64(s.len)) bare_print(c'println(NIL)\n', 13) } $else { _ = C.write(1, c'println(NIL)\n', 13) } return } $if android { C.fprintf(C.stdout, c'%.*s\n', s.len, s.str) } $else $if ios { C.WrappedNSLog(s.str) } $else $if freestanding { bare_print(s.str, u64(s.len)) bare_print(c'\n', 1) } $else { _ = C.write(1, s.str, s.len) _ = C.write(1, c'\n', 1) } } // malloc dynamically allocates a `n` bytes block of memory on the heap. // malloc returns a `byteptr` pointing to the memory address of the allocated space. // unlike the `calloc` family of functions - malloc will not zero the memory block. [unsafe] pub fn malloc(n int) &byte { if n <= 0 { panic('> V malloc(<=0)') } $if vplayground ? { if n > 10000 { panic('allocating more than 10 KB is not allowed in the playground') } } $if trace_malloc ? { total_m += n C.fprintf(C.stderr, c'v_malloc %6d total %10d\n', n, total_m) // print_backtrace() } mut res := &byte(0) $if prealloc { res = g_m2_ptr unsafe { g_m2_ptr += n } nr_mallocs++ } $else { $if gcboehm ? { unsafe { res = C.GC_MALLOC(n) } } $else $if freestanding { mut e := Errno{} res, e = mm_alloc(u64(n)) if e != .enoerror { eprint('malloc() failed: ') eprintln(e.str()) panic('malloc() failed') } } $else { res = unsafe { C.malloc(n) } } if res == 0 { panic('malloc($n) failed') } } $if debug_malloc ? { // Fill in the memory with something != 0, so it is easier to spot // when the calling code wrongly relies on it being zeroed. unsafe { C.memset(res, 0x88, n) } } return res } /* #include fn malloc_size(b byteptr) int */ // v_realloc resizes the memory block `b` with `n` bytes. // The `b byteptr` must be a pointer to an existing memory block // previously allocated with `malloc`, `v_calloc` or `vcalloc`. // Please, see also realloc_data, and use it instead if possible. [unsafe] pub fn v_realloc(b &byte, n int) &byte { mut new_ptr := &byte(0) $if prealloc { unsafe { new_ptr = malloc(n) C.memcpy(new_ptr, b, n) } } $else { $if gcboehm ? { new_ptr = unsafe { C.GC_REALLOC(b, n) } } $else { new_ptr = unsafe { C.realloc(b, n) } } if new_ptr == 0 { panic('realloc($n) failed') } } return new_ptr } // realloc_data resizes the memory block pointed by `old_data` to `new_size` // bytes. `old_data` must be a pointer to an existing memory block, previously // allocated with `malloc`, `v_calloc` or `vcalloc`, of size `old_data`. // realloc_data returns a pointer to the new location of the block. // NB: if you know the old data size, it is preferable to call `realloc_data`, // instead of `v_realloc`, at least during development, because `realloc_data` // can make debugging easier, when you compile your program with // `-d debug_realloc`. [unsafe] pub fn realloc_data(old_data &byte, old_size int, new_size int) &byte { $if prealloc { unsafe { new_ptr := malloc(new_size) min_size := if old_size < new_size { old_size } else { new_size } C.memcpy(new_ptr, old_data, min_size) return new_ptr } } $if debug_realloc ? { // NB: this is slower, but helps debugging memory problems. // The main idea is to always force reallocating: // 1) allocate a new memory block // 2) copy the old to the new // 3) fill the old with 0x57 (`W`) // 4) free the old block // => if there is still a pointer to the old block somewhere // it will point to memory that is now filled with 0x57. unsafe { new_ptr := malloc(new_size) min_size := if old_size < new_size { old_size } else { new_size } C.memcpy(new_ptr, old_data, min_size) C.memset(old_data, 0x57, old_size) free(old_data) return new_ptr } } mut nptr := &byte(0) $if gcboehm ? { nptr = unsafe { C.GC_REALLOC(old_data, new_size) } } $else { nptr = unsafe { C.realloc(old_data, new_size) } } if nptr == 0 { panic('realloc_data($old_data, $old_size, $new_size) failed') } return nptr } // vcalloc dynamically allocates a zeroed `n` bytes block of memory on the heap. // vcalloc returns a `byteptr` pointing to the memory address of the allocated space. // Unlike `v_calloc` vcalloc checks for negative values given in `n`. pub fn vcalloc(n int) &byte { if n < 0 { panic('calloc(<0)') } else if n == 0 { return &byte(0) } $if gcboehm ? { return &byte(C.GC_MALLOC(n)) } $else { return C.calloc(1, n) } } // special versions of the above that allocate memory which is not scanned // for pointers (but is collected) when the Boehm garbage collection is used pub fn vcalloc_noscan(n int) &byte { $if gcboehm ? { $if vplayground ? { if n > 10000 { panic('allocating more than 10 KB is not allowed in the playground') } } if n < 0 { panic('calloc(<0)') } return &byte(unsafe { C.memset(C.GC_MALLOC_ATOMIC(n), 0, n) }) } $else { return unsafe { vcalloc(n) } } } // free allows for manually freeing memory allocated at the address `ptr`. [unsafe] pub fn free(ptr voidptr) { $if prealloc { return } $if gcboehm ? { // It is generally better to leave it to Boehm's gc to free things. // Calling C.GC_FREE(ptr) was tried initially, but does not work // well with programs that do manual management themselves. // // The exception is doing leak detection for manual memory management: $if gcboehm_leak ? { C.GC_FREE(ptr) } return } C.free(ptr) } // memdup dynamically allocates a `sz` bytes block of memory on the heap // memdup then copies the contents of `src` into the allocated space and // returns a pointer to the newly allocated space. [unsafe] pub fn memdup(src voidptr, sz int) voidptr { if sz == 0 { return vcalloc(1) } unsafe { mem := malloc(sz) return C.memcpy(mem, src, sz) } } [inline] fn v_fixed_index(i int, len int) int { $if !no_bounds_checking ? { if i < 0 || i >= len { s := 'fixed array index out of range (index: $i, len: $len)' panic(s) } } return i }