module builtin type FnExitCb = fn () fn C.atexit(f FnExitCb) int [noreturn] fn vhalt() { for {} } // exit terminates execution immediately and returns exit `code` to the shell. [noreturn] pub fn exit(code int) { C.exit(code) } fn vcommithash() string { return unsafe { tos5(&char(C.V_CURRENT_COMMIT_HASH)) } } // panic_debug private function that V uses for panics, -cg/-g is passed // recent versions of tcc print nicer backtraces automatically // NB: the duplication here is because tcc_backtrace should be called directly // inside the panic functions. [noreturn] fn panic_debug(line_no int, file string, mod string, fn_name string, s string) { // NB: the order here is important for a stabler test output // module is less likely to change than function, etc... // During edits, the line number will change most frequently, // so it is last $if freestanding { bare_panic(s) } $else { eprintln('================ V panic ================') eprintln(' module: $mod') eprintln(' function: ${fn_name}()') eprintln(' message: $s') eprintln(' file: $file:$line_no') eprintln(' v hash: $vcommithash()') eprintln('=========================================') $if exit_after_panic_message ? { C.exit(1) } $else $if no_backtrace ? { C.exit(1) } $else { $if tinyc { $if panics_break_into_debugger ? { break_if_debugger_attached() } $else { C.tcc_backtrace(c'Backtrace') } C.exit(1) } print_backtrace_skipping_top_frames(1) $if panics_break_into_debugger ? { break_if_debugger_attached() } C.exit(1) } } vhalt() } [noreturn] pub fn panic_optional_not_set(s string) { panic('optional not set ($s)') } // panic prints a nice error message, then exits the process with exit code of 1. // It also shows a backtrace on most platforms. [noreturn] pub fn panic(s string) { $if freestanding { bare_panic(s) } $else { eprint('V panic: ') eprintln(s) eprintln('v hash: $vcommithash()') $if exit_after_panic_message ? { C.exit(1) } $else $if no_backtrace ? { C.exit(1) } $else { $if tinyc { $if panics_break_into_debugger ? { break_if_debugger_attached() } $else { C.tcc_backtrace(c'Backtrace') } C.exit(1) } print_backtrace_skipping_top_frames(1) $if panics_break_into_debugger ? { break_if_debugger_attached() } C.exit(1) } } vhalt() } // eprintln prints a message with a line end, to stderr. Both stderr and stdout are flushed. pub fn eprintln(s string) { if s.str == 0 { eprintln('eprintln(NIL)') return } $if freestanding { // flushing is only a thing with C.FILE from stdio.h, not on the syscall level bare_eprint(s.str, u64(s.len)) bare_eprint(c'\n', 1) } $else $if ios { C.WrappedNSLog(s.str) } $else { C.fflush(C.stdout) C.fflush(C.stderr) // eprintln is used in panics, so it should not fail at all $if android { C.fprintf(C.stderr, c'%.*s\n', s.len, s.str) } _writeln_to_fd(2, s) C.fflush(C.stderr) } } // eprint prints a message to stderr. Both stderr and stdout are flushed. pub fn eprint(s string) { if s.str == 0 { eprint('eprint(NIL)') return } $if freestanding { // flushing is only a thing with C.FILE from stdio.h, not on the syscall level bare_eprint(s.str, u64(s.len)) } $else $if ios { // TODO: Implement a buffer as NSLog doesn't have a "print" C.WrappedNSLog(s.str) } $else { C.fflush(C.stdout) C.fflush(C.stderr) $if android { C.fprintf(C.stderr, c'%.*s', s.len, s.str) } _write_buf_to_fd(2, s.str, s.len) C.fflush(C.stderr) } } // print prints a message to stdout. Unlike `println` stdout is not automatically flushed. // A call to `flush()` will flush the output buffer to stdout. [manualfree] pub fn print(s string) { $if android { C.fprintf(C.stdout, c'%.*s', s.len, s.str) // logcat } // no else if for android termux support $if ios { // TODO: Implement a buffer as NSLog doesn't have a "print" C.WrappedNSLog(s.str) } $else $if freestanding { bare_print(s.str, u64(s.len)) } $else { _write_buf_to_fd(1, s.str, s.len) } } // println prints a message with a line end, to stdout. stdout is flushed. [manualfree] pub fn println(s string) { if s.str == 0 { println('println(NIL)') return } $if android { C.fprintf(C.stdout, c'%.*s\n', s.len, s.str) // logcat return } // no else if for android termux support $if ios { C.WrappedNSLog(s.str) return } $else $if freestanding { bare_print(s.str, u64(s.len)) bare_print(c'\n', 1) return } $else { _writeln_to_fd(1, s) } } [manualfree] fn _writeln_to_fd(fd int, s string) { unsafe { buf_len := s.len + 1 // space for \n mut buf := malloc(buf_len) defer { free(buf) } C.memcpy(buf, s.str, s.len) buf[s.len] = `\n` _write_buf_to_fd(fd, buf, buf_len) } } [manualfree] fn _write_buf_to_fd(fd int, buf &byte, buf_len int) { if buf_len <= 0 { return } unsafe { mut ptr := buf mut remaining_bytes := buf_len for remaining_bytes > 0 { x := C.write(fd, ptr, remaining_bytes) ptr += x remaining_bytes -= x } } } __global total_m = i64(0) // malloc dynamically allocates a `n` bytes block of memory on the heap. // malloc returns a `byteptr` pointing to the memory address of the allocated space. // unlike the `calloc` family of functions - malloc will not zero the memory block. [unsafe] pub fn malloc(n int) &byte { if n <= 0 { panic('> V malloc(<=0)') } $if vplayground ? { if n > 10000 { panic('allocating more than 10 KB at once is not allowed in the V playground') } if total_m > 50 * 1024 * 1024 { panic('allocating more than 50 MB is not allowed in the V playground') } } $if trace_malloc ? { total_m += n C.fprintf(C.stderr, c'_v_malloc %6d total %10d\n', n, total_m) // print_backtrace() } mut res := &byte(0) $if prealloc { return unsafe { prealloc_malloc(n) } } $else $if gcboehm ? { unsafe { res = C.GC_MALLOC(n) } } $else $if freestanding { mut e := Errno{} res, e = mm_alloc(u64(n)) if e != .enoerror { eprint('malloc() failed: ') eprintln(e.str()) panic('malloc() failed') } } $else { res = unsafe { C.malloc(n) } } if res == 0 { panic('malloc($n) failed') } $if debug_malloc ? { // Fill in the memory with something != 0, so it is easier to spot // when the calling code wrongly relies on it being zeroed. unsafe { C.memset(res, 0x88, n) } } return res } [unsafe] pub fn malloc_noscan(n int) &byte { if n <= 0 { panic('> V malloc(<=0)') } $if vplayground ? { if n > 10000 { panic('allocating more than 10 KB at once is not allowed in the V playground') } if total_m > 50 * 1024 * 1024 { panic('allocating more than 50 MB is not allowed in the V playground') } } $if trace_malloc ? { total_m += n C.fprintf(C.stderr, c'_v_malloc %6d total %10d\n', n, total_m) // print_backtrace() } mut res := &byte(0) $if prealloc { return unsafe { prealloc_malloc(n) } } $else $if gcboehm ? { $if gcboehm_opt ? { unsafe { res = C.GC_MALLOC_ATOMIC(n) } } $else { unsafe { res = C.GC_MALLOC(n) } } } $else $if freestanding { mut e := Errno{} res, e = mm_alloc(u64(n)) if e != .enoerror { eprint('malloc() failed: ') eprintln(e.str()) panic('malloc() failed') } } $else { res = unsafe { C.malloc(n) } } if res == 0 { panic('malloc($n) failed') } $if debug_malloc ? { // Fill in the memory with something != 0, so it is easier to spot // when the calling code wrongly relies on it being zeroed. unsafe { C.memset(res, 0x88, n) } } return res } // v_realloc resizes the memory block `b` with `n` bytes. // The `b byteptr` must be a pointer to an existing memory block // previously allocated with `malloc`, `v_calloc` or `vcalloc`. // Please, see also realloc_data, and use it instead if possible. [unsafe] pub fn v_realloc(b &byte, n int) &byte { $if trace_realloc ? { C.fprintf(C.stderr, c'v_realloc %6d\n', n) } mut new_ptr := &byte(0) $if prealloc { unsafe { new_ptr = malloc(n) C.memcpy(new_ptr, b, n) } return new_ptr } $else $if gcboehm ? { new_ptr = unsafe { C.GC_REALLOC(b, n) } } $else { new_ptr = unsafe { C.realloc(b, n) } } if new_ptr == 0 { panic('realloc($n) failed') } return new_ptr } // realloc_data resizes the memory block pointed by `old_data` to `new_size` // bytes. `old_data` must be a pointer to an existing memory block, previously // allocated with `malloc`, `v_calloc` or `vcalloc`, of size `old_data`. // realloc_data returns a pointer to the new location of the block. // NB: if you know the old data size, it is preferable to call `realloc_data`, // instead of `v_realloc`, at least during development, because `realloc_data` // can make debugging easier, when you compile your program with // `-d debug_realloc`. [unsafe] pub fn realloc_data(old_data &byte, old_size int, new_size int) &byte { $if trace_realloc ? { C.fprintf(C.stderr, c'realloc_data old_size: %6d new_size: %6d\n', old_size, new_size) } $if prealloc { return unsafe { prealloc_realloc(old_data, old_size, new_size) } } $if debug_realloc ? { // NB: this is slower, but helps debugging memory problems. // The main idea is to always force reallocating: // 1) allocate a new memory block // 2) copy the old to the new // 3) fill the old with 0x57 (`W`) // 4) free the old block // => if there is still a pointer to the old block somewhere // it will point to memory that is now filled with 0x57. unsafe { new_ptr := malloc(new_size) min_size := if old_size < new_size { old_size } else { new_size } C.memcpy(new_ptr, old_data, min_size) C.memset(old_data, 0x57, old_size) free(old_data) return new_ptr } } mut nptr := &byte(0) $if gcboehm ? { nptr = unsafe { C.GC_REALLOC(old_data, new_size) } } $else { nptr = unsafe { C.realloc(old_data, new_size) } } if nptr == 0 { panic('realloc_data($old_data, $old_size, $new_size) failed') } return nptr } // vcalloc dynamically allocates a zeroed `n` bytes block of memory on the heap. // vcalloc returns a `byteptr` pointing to the memory address of the allocated space. // Unlike `v_calloc` vcalloc checks for negative values given in `n`. pub fn vcalloc(n int) &byte { if n < 0 { panic('calloc(<0)') } else if n == 0 { return &byte(0) } $if trace_vcalloc ? { total_m += n C.fprintf(C.stderr, c'vcalloc %6d total %10d\n', n, total_m) } $if prealloc { return unsafe { prealloc_calloc(n) } } $else $if gcboehm ? { return unsafe { &byte(C.GC_MALLOC(n)) } } $else { return unsafe { C.calloc(1, n) } } } // special versions of the above that allocate memory which is not scanned // for pointers (but is collected) when the Boehm garbage collection is used pub fn vcalloc_noscan(n int) &byte { $if trace_vcalloc ? { total_m += n C.fprintf(C.stderr, c'vcalloc_noscan %6d total %10d\n', n, total_m) } $if prealloc { return unsafe { prealloc_calloc(n) } } $else $if gcboehm ? { $if vplayground ? { if n > 10000 { panic('allocating more than 10 KB is not allowed in the playground') } } if n < 0 { panic('calloc(<0)') } return $if gcboehm_opt ? { unsafe { &byte(C.memset(C.GC_MALLOC_ATOMIC(n), 0, n)) } } $else { unsafe { &byte(C.GC_MALLOC(n)) } } } $else { return unsafe { vcalloc(n) } } } // free allows for manually freeing memory allocated at the address `ptr`. [unsafe] pub fn free(ptr voidptr) { $if prealloc { return } $else $if gcboehm ? { // It is generally better to leave it to Boehm's gc to free things. // Calling C.GC_FREE(ptr) was tried initially, but does not work // well with programs that do manual management themselves. // // The exception is doing leak detection for manual memory management: $if gcboehm_leak ? { unsafe { C.GC_FREE(ptr) } } } $else { C.free(ptr) } } // memdup dynamically allocates a `sz` bytes block of memory on the heap // memdup then copies the contents of `src` into the allocated space and // returns a pointer to the newly allocated space. [unsafe] pub fn memdup(src voidptr, sz int) voidptr { if sz == 0 { return vcalloc(1) } unsafe { mem := malloc(sz) return C.memcpy(mem, src, sz) } } [unsafe] pub fn memdup_noscan(src voidptr, sz int) voidptr { if sz == 0 { return vcalloc_noscan(1) } unsafe { mem := vcalloc_noscan(sz) return C.memcpy(mem, src, sz) } } [inline] fn v_fixed_index(i int, len int) int { $if !no_bounds_checking ? { if i < 0 || i >= len { s := 'fixed array index out of range (index: $i, len: $len)' panic(s) } } return i }