// Copyright (c) 2019-2021 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license that can be found in the LICENSE file. module gg import gx import sokol.sapp import sokol.sgl import sokol.gfx import math pub type FNCb = fn (data voidptr) pub type FNEvent = fn (e &Event, data voidptr) pub type FNFail = fn (msg string, data voidptr) pub type FNKeyDown = fn (c KeyCode, m Modifier, data voidptr) pub type FNKeyUp = fn (c KeyCode, m Modifier, data voidptr) pub type FNMove = fn (x f32, y f32, data voidptr) pub type FNClick = fn (x f32, y f32, button MouseButton, data voidptr) pub type FNUnClick = fn (x f32, y f32, button MouseButton, data voidptr) pub type FNChar = fn (c u32, data voidptr) pub struct Config { pub: width int height int use_ortho bool // unused, still here just for backwards compatibility retina bool resizable bool user_data voidptr font_size int create_window bool // window_user_ptr voidptr window_title string borderless_window bool always_on_top bool bg_color gx.Color init_fn FNCb = voidptr(0) frame_fn FNCb = voidptr(0) native_frame_fn FNCb = voidptr(0) cleanup_fn FNCb = voidptr(0) fail_fn FNFail = voidptr(0) // event_fn FNEvent = voidptr(0) quit_fn FNEvent = voidptr(0) // keydown_fn FNKeyDown = voidptr(0) keyup_fn FNKeyUp = voidptr(0) char_fn FNChar = voidptr(0) // move_fn FNMove = voidptr(0) click_fn FNClick = voidptr(0) unclick_fn FNUnClick = voidptr(0) leave_fn FNEvent = voidptr(0) enter_fn FNEvent = voidptr(0) resized_fn FNEvent = voidptr(0) scroll_fn FNEvent = voidptr(0) // wait_events bool // set this to true for UIs, to save power fullscreen bool scale f32 = 1.0 sample_count int swap_interval int = 1 // 1 = 60fps, 2 = 30fps etc. The preferred swap interval (ignored on some platforms) // ved needs this // init_text bool font_path string custom_bold_font_path string ui_mode bool // refreshes only on events to save CPU usage // font bytes for embedding font_bytes_normal []byte font_bytes_bold []byte font_bytes_mono []byte font_bytes_italic []byte native_rendering bool // Cocoa on macOS/iOS, GDI+ on Windows // drag&drop enable_dragndrop bool // enable file dropping (drag'n'drop), default is false max_dropped_files int = 1 // max number of dropped files to process (default: 1) max_dropped_file_path_length int = 2048 // max length in bytes of a dropped UTF-8 file path (default: 2048) } pub struct PenConfig { color gx.Color line_type PenLineType = .solid thickness int = 1 } pub struct Size { pub: width int height int } fn gg_frame_fn(user_data voidptr) { mut ctx := unsafe { &Context(user_data) } ctx.frame++ if ctx.config.frame_fn == voidptr(0) { return } if ctx.native_rendering { // return } ctx.record_frame() if ctx.ui_mode && !ctx.needs_refresh { // Draw 3 more frames after the "stop refresh" command ctx.ticks++ if ctx.ticks > 3 { return } } ctx.config.frame_fn(ctx.user_data) ctx.needs_refresh = false } pub fn (mut ctx Context) refresh_ui() { ctx.needs_refresh = true ctx.ticks = 0 } fn gg_event_fn(ce voidptr, user_data voidptr) { // e := unsafe { &sapp.Event(ce) } mut e := unsafe { &Event(ce) } mut g := unsafe { &Context(user_data) } if g.ui_mode { g.refresh_ui() } if e.typ == .mouse_down { bitplace := int(e.mouse_button) g.mbtn_mask |= byte(1 << bitplace) g.mouse_buttons = MouseButtons(g.mbtn_mask) } if e.typ == .mouse_up { bitplace := int(e.mouse_button) g.mbtn_mask &= ~(byte(1 << bitplace)) g.mouse_buttons = MouseButtons(g.mbtn_mask) } if e.typ == .mouse_move && e.mouse_button == .invalid { if g.mbtn_mask & 0x01 > 0 { e.mouse_button = .left } if g.mbtn_mask & 0x02 > 0 { e.mouse_button = .right } if g.mbtn_mask & 0x04 > 0 { e.mouse_button = .middle } } g.mouse_pos_x = int(e.mouse_x / g.scale) g.mouse_pos_y = int(e.mouse_y / g.scale) g.mouse_dx = int(e.mouse_dx / g.scale) g.mouse_dy = int(e.mouse_dy / g.scale) g.scroll_x = int(e.scroll_x / g.scale) g.scroll_y = int(e.scroll_y / g.scale) g.key_modifiers = Modifier(e.modifiers) g.key_repeat = e.key_repeat if e.typ in [.key_down, .key_up] { key_idx := int(e.key_code) % key_code_max prev := g.pressed_keys[key_idx] next := e.typ == .key_down g.pressed_keys[key_idx] = next g.pressed_keys_edge[key_idx] = prev != next } if g.config.event_fn != voidptr(0) { g.config.event_fn(e, g.config.user_data) } match e.typ { .mouse_move { if g.config.move_fn != voidptr(0) { g.config.move_fn(e.mouse_x / g.scale, e.mouse_y / g.scale, g.config.user_data) } } .mouse_down { if g.config.click_fn != voidptr(0) { g.config.click_fn(e.mouse_x / g.scale, e.mouse_y / g.scale, e.mouse_button, g.config.user_data) } } .mouse_up { if g.config.unclick_fn != voidptr(0) { g.config.unclick_fn(e.mouse_x / g.scale, e.mouse_y / g.scale, e.mouse_button, g.config.user_data) } } .mouse_leave { if g.config.leave_fn != voidptr(0) { g.config.leave_fn(e, g.config.user_data) } } .mouse_enter { if g.config.enter_fn != voidptr(0) { g.config.enter_fn(e, g.config.user_data) } } .mouse_scroll { if g.config.scroll_fn != voidptr(0) { g.config.scroll_fn(e, g.config.user_data) } } .key_down { if g.config.keydown_fn != voidptr(0) { g.config.keydown_fn(e.key_code, Modifier(e.modifiers), g.config.user_data) } } .key_up { if g.config.keyup_fn != voidptr(0) { g.config.keyup_fn(e.key_code, Modifier(e.modifiers), g.config.user_data) } } .char { if g.config.char_fn != voidptr(0) { g.config.char_fn(e.char_code, g.config.user_data) } } .resized { if g.config.resized_fn != voidptr(0) { g.config.resized_fn(e, g.config.user_data) } } .quit_requested { if g.config.quit_fn != voidptr(0) { g.config.quit_fn(e, g.config.user_data) } } else { // dump(e) } } } fn gg_cleanup_fn(user_data voidptr) { mut g := unsafe { &Context(user_data) } if g.config.cleanup_fn != voidptr(0) { g.config.cleanup_fn(g.config.user_data) } gfx.shutdown() } fn gg_fail_fn(msg &char, user_data voidptr) { mut g := unsafe { &Context(user_data) } vmsg := unsafe { tos3(msg) } if g.config.fail_fn != voidptr(0) { g.config.fail_fn(vmsg, g.config.user_data) } else { eprintln('gg error: $vmsg') } } pub fn (ctx &Context) run() { sapp.run(&ctx.window) } // Prepares the context for drawing pub fn (gg &Context) begin() { if gg.render_text && gg.font_inited { gg.ft.flush() } sgl.defaults() sgl.matrix_mode_projection() sgl.ortho(0.0, f32(sapp.width()), f32(sapp.height()), 0.0, -1.0, 1.0) } // Finishes drawing for the context pub fn (gg &Context) end() { gfx.begin_default_pass(gg.clear_pass, sapp.width(), sapp.height()) sgl.draw() gfx.end_pass() gfx.commit() /* if gg.config.wait_events { // println('gg: waiting') wait_events() } */ } // quit closes the context window and exits the event loop for it pub fn (ctx &Context) quit() { sapp.request_quit() // does not require ctx right now, but sokol multi-window might in the future } pub fn (mut ctx Context) set_bg_color(c gx.Color) { ctx.clear_pass = gfx.create_clear_pass(f32(c.r) / 255.0, f32(c.g) / 255.0, f32(c.b) / 255.0, f32(c.a) / 255.0) } // Sets a pixel [inline] pub fn (ctx &Context) set_pixel(x f32, y f32, c gx.Color) { if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_points() sgl.v2f(x * ctx.scale, y * ctx.scale) sgl.end() } // Sets pixels from an array of points [x, y, x2, y2, etc...] [direct_array_access; inline] pub fn (ctx &Context) set_pixels(points []f32, c gx.Color) { assert points.len % 2 == 0 len := points.len / 2 if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_points() for i in 0 .. len { x, y := points[i * 2], points[i * 2 + 1] sgl.v2f(x * ctx.scale, y * ctx.scale) } sgl.end() } // Draws a filled triangle pub fn (ctx &Context) draw_triangle(x f32, y f32, x2 f32, y2 f32, x3 f32, y3 f32, c gx.Color) { if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_triangles() sgl.v2f(x * ctx.scale, y * ctx.scale) sgl.v2f(x2 * ctx.scale, y2 * ctx.scale) sgl.v2f(x3 * ctx.scale, y3 * ctx.scale) sgl.end() } // Draws the outline of a triangle pub fn (ctx &Context) draw_empty_triangle(x f32, y f32, x2 f32, y2 f32, x3 f32, y3 f32, c gx.Color) { if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_line_strip() sgl.v2f(x * ctx.scale, y * ctx.scale) sgl.v2f(x2 * ctx.scale, y2 * ctx.scale) sgl.v2f(x3 * ctx.scale, y3 * ctx.scale) sgl.v2f(x * ctx.scale, y * ctx.scale) sgl.end() } // Draws a filled square [inline] pub fn (ctx &Context) draw_square(x f32, y f32, s f32, c gx.Color) { ctx.draw_rect(x, y, s, s, c) } // Draws the outline of a square [inline] pub fn (ctx &Context) draw_empty_square(x f32, y f32, s f32, c gx.Color) { ctx.draw_empty_rect(x, y, s, s, c) } // Draws the outline of a rectangle pub fn (ctx &Context) draw_empty_rect(x f32, y f32, w f32, h f32, c gx.Color) { if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_line_strip() sgl.v2f(x * ctx.scale, y * ctx.scale) sgl.v2f((x + w) * ctx.scale, y * ctx.scale) sgl.v2f((x + w) * ctx.scale, (y + h) * ctx.scale) sgl.v2f(x * ctx.scale, (y + h) * ctx.scale) sgl.v2f(x * ctx.scale, (y - 1) * ctx.scale) sgl.end() } // Draws a circle pub fn (ctx &Context) draw_circle(x f32, y f32, r f32, c gx.Color) { ctx.draw_circle_with_segments(x, y, r, 10, c) } // Draws a circle with a specific number of segments (affects how smooth/round the circle is) pub fn (ctx &Context) draw_circle_with_segments(x f32, y f32, r f32, segments int, c gx.Color) { if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) nx := x * ctx.scale ny := y * ctx.scale nr := r * ctx.scale mut theta := f32(0) mut xx := f32(0) mut yy := f32(0) sgl.begin_triangle_strip() for i := 0; i < segments + 1; i++ { theta = 2.0 * f32(math.pi) * f32(i) / f32(segments) xx = nr * math.cosf(theta) yy = nr * math.sinf(theta) sgl.v2f(xx + nx, yy + ny) sgl.v2f(nx, ny) } sgl.end() } // Draws a circle slice/pie. pub fn (ctx &Context) draw_slice(x f32, y f32, r f32, start_angle f32, arc_angle f32, segments int, c gx.Color) { if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) nx := x * ctx.scale ny := y * ctx.scale theta := f32(arc_angle / f32(segments)) tan_factor := math.tanf(theta) rad_factor := math.cosf(theta) mut xx := r * math.cosf(start_angle) mut yy := r * math.sinf(start_angle) sgl.begin_triangle_strip() for i := 0; i < segments + 1; i++ { sgl.v2f(xx + nx, yy + ny) sgl.v2f(nx, ny) tx := -yy ty := xx xx += tx * tan_factor yy += ty * tan_factor xx *= rad_factor yy *= rad_factor } sgl.end() } // Draws the outline of a circle slice/pie. pub fn (ctx &Context) draw_empty_slice(x f32, y f32, r f32, start_angle f32, arc_angle f32, segments int, c gx.Color) { if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) theta := f32(arc_angle / f32(segments)) tan_factor := math.tanf(theta) rad_factor := math.cosf(theta) nx := x * ctx.scale ny := y * ctx.scale mut xx := r * math.cosf(start_angle) mut yy := r * math.sinf(start_angle) sgl.begin_line_strip() for i := 0; i < segments + 1; i++ { sgl.v2f(xx + nx, yy + ny) tx := -yy ty := xx xx += tx * tan_factor yy += ty * tan_factor xx *= rad_factor yy *= rad_factor } sgl.end() } // Resize the context's Window pub fn (mut ctx Context) resize(width int, height int) { ctx.width = width ctx.height = height // C.sapp_resize_window(width, height) } // Draws a line between the points provided pub fn (ctx &Context) draw_line(x f32, y f32, x2 f32, y2 f32, c gx.Color) { $if macos { if ctx.native_rendering { // Make the line more clear on hi dpi screens: draw a rectangle mut width := math.abs(x2 - x) mut height := math.abs(y2 - y) if width == 0 { width = 1 } else if height == 0 { height = 1 } ctx.draw_rect(x, y, f32(width), f32(height), c) return } } if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_line_strip() sgl.v2f(x * ctx.scale, y * ctx.scale) sgl.v2f(x2 * ctx.scale, y2 * ctx.scale) sgl.end() } // Draws a line between the points provided with the PenConfig pub fn (ctx &Context) draw_line_with_config(x f32, y f32, x2 f32, y2 f32, config PenConfig) { if config.color.a != 255 { sgl.load_pipeline(ctx.timage_pip) } if config.thickness <= 0 { return } nx := x * ctx.scale ny := y * ctx.scale nx2 := x2 * ctx.scale ny2 := y2 * ctx.scale dx := nx2 - nx dy := ny2 - ny length := math.sqrtf(math.powf(x2 - x, 2) + math.powf(y2 - y, 2)) theta := f32(math.atan2(dy, dx)) sgl.push_matrix() sgl.translate(nx, ny, 0) sgl.rotate(theta, 0, 0, 1) sgl.translate(-nx, -ny, 0) if config.line_type == .solid { ctx.draw_rect(x, y, length, config.thickness, config.color) } else { size := if config.line_type == .dotted { config.thickness } else { config.thickness * 3 } space := if size == 1 { 2 } else { size } mut available := length mut start_x := x for i := 0; available > 0; i++ { if i % 2 == 0 { ctx.draw_rect(start_x, y, size, config.thickness, config.color) available -= size start_x += size continue } available -= space start_x += space } } sgl.pop_matrix() } // Draws an arc pub fn (ctx &Context) draw_arc(x f32, y f32, inner_r f32, outer_r f32, start_angle f32, end_angle f32, segments int, c gx.Color) { if start_angle == end_angle || outer_r <= 0.0 { return } mut r1 := inner_r mut r2 := outer_r mut a1 := start_angle mut a2 := end_angle // TODO: Maybe this does not make since inner_r and outer_r is actually integers? if outer_r < inner_r { r1, r2 = r2, r1 if r2 <= 0.0 { r2 = 0.1 } } if a2 < a1 { a1, a2 = a2, a1 } if r1 <= 0.0 { ctx.draw_slice(x, y, int(r2), a1, a2, segments, c) return } mut step_length := (a2 - a1) / f32(segments) mut angle := a1 sgl.begin_quads() sgl.c4b(c.r, c.g, c.b, c.a) for _ in 0 .. segments { sgl.v2f(x + f32(math.sin(angle)) * r1, y + f32(math.cos(angle) * r1)) sgl.v2f(x + f32(math.sin(angle)) * r2, y + f32(math.cos(angle) * r2)) sgl.v2f(x + f32(math.sin(angle + step_length)) * r2, y + f32(math.cos(angle + step_length) * r2)) sgl.v2f(x + f32(math.sin(angle + step_length)) * r1, y + f32(math.cos(angle + step_length) * r1)) angle += step_length } sgl.end() } // Draws a filled rounded rectangle pub fn (ctx &Context) draw_rounded_rect(x f32, y f32, w f32, h f32, radius f32, c gx.Color) { sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_triangle_strip() mut theta := f32(0) mut xx := f32(0) mut yy := f32(0) r := radius * ctx.scale nx := x * ctx.scale ny := y * ctx.scale width := w * ctx.scale height := h * ctx.scale segments := 2 * math.pi * r segdiv := segments / 4 rb := 0 lb := int(rb + segdiv) lt := int(lb + segdiv) rt := int(lt + segdiv) // left top lx := nx + r ly := ny + r for i in lt .. rt { theta = 2 * f32(math.pi) * f32(i) / segments xx = r * math.cosf(theta) yy = r * math.sinf(theta) sgl.v2f(xx + lx, yy + ly) sgl.v2f(lx, ly) } // right top mut rx := nx + width - r mut ry := ny + r for i in rt .. int(segments) { theta = 2 * f32(math.pi) * f32(i) / segments xx = r * math.cosf(theta) yy = r * math.sinf(theta) sgl.v2f(xx + rx, yy + ry) sgl.v2f(rx, ry) } // right bottom mut rbx := rx mut rby := ny + height - r for i in rb .. lb { theta = 2 * f32(math.pi) * f32(i) / segments xx = r * math.cosf(theta) yy = r * math.sinf(theta) sgl.v2f(xx + rbx, yy + rby) sgl.v2f(rbx, rby) } // left bottom mut lbx := lx mut lby := ny + height - r for i in lb .. lt { theta = 2 * f32(math.pi) * f32(i) / segments xx = r * math.cosf(theta) yy = r * math.sinf(theta) sgl.v2f(xx + lbx, yy + lby) sgl.v2f(lbx, lby) } sgl.v2f(lx + xx, ly) sgl.v2f(lx, ly) sgl.end() sgl.begin_quads() sgl.v2f(lx, ly) sgl.v2f(rx, ry) sgl.v2f(rbx, rby) sgl.v2f(lbx, lby) sgl.end() } // Draws the outline of a rounded rectangle pub fn (ctx &Context) draw_empty_rounded_rect(x f32, y f32, w f32, h f32, radius f32, c gx.Color) { mut theta := f32(0) mut xx := f32(0) mut yy := f32(0) r := radius * ctx.scale nx := x * ctx.scale ny := y * ctx.scale width := w * ctx.scale height := h * ctx.scale segments := 2 * math.pi * r segdiv := segments / 4 rb := 0 lb := int(rb + segdiv) lt := int(lb + segdiv) rt := int(lt + segdiv) sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_line_strip() // left top lx := nx + r ly := ny + r for i in lt .. rt { theta = 2 * f32(math.pi) * f32(i) / segments xx = r * math.cosf(theta) yy = r * math.sinf(theta) sgl.v2f(xx + lx, yy + ly) } // right top mut rx := nx + width - r mut ry := ny + r for i in rt .. int(segments) { theta = 2 * f32(math.pi) * f32(i) / segments xx = r * math.cosf(theta) yy = r * math.sinf(theta) sgl.v2f(xx + rx, yy + ry) } // right bottom mut rbx := rx mut rby := ny + height - r for i in rb .. lb { theta = 2 * f32(math.pi) * f32(i) / segments xx = r * math.cosf(theta) yy = r * math.sinf(theta) sgl.v2f(xx + rbx, yy + rby) } // left bottom mut lbx := lx mut lby := ny + height - r for i in lb .. lt { theta = 2 * f32(math.pi) * f32(i) / segments xx = r * math.cosf(theta) yy = r * math.sinf(theta) sgl.v2f(xx + lbx, yy + lby) } sgl.v2f(lx + xx, ly) sgl.end() } // draw_convex_poly draws a convex polygon, given an array of points, and a color. // Note that the points must be given in clockwise order. pub fn (ctx &Context) draw_convex_poly(points []f32, c gx.Color) { assert points.len % 2 == 0 len := points.len / 2 assert len >= 3 if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_triangle_strip() x0 := points[0] * ctx.scale y0 := points[1] * ctx.scale for i in 1 .. (len / 2 + 1) { sgl.v2f(x0, y0) sgl.v2f(points[i * 4 - 2] * ctx.scale, points[i * 4 - 1] * ctx.scale) sgl.v2f(points[i * 4] * ctx.scale, points[i * 4 + 1] * ctx.scale) } if len % 2 == 0 { sgl.v2f(points[2 * len - 2] * ctx.scale, points[2 * len - 1] * ctx.scale) } sgl.end() } // draw_empty_poly - draws the borders of a polygon, given an array of points, and a color. // Note that the points must be given in clockwise order. pub fn (ctx &Context) draw_empty_poly(points []f32, c gx.Color) { assert points.len % 2 == 0 len := points.len / 2 assert len >= 3 if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_line_strip() for i in 0 .. len { sgl.v2f(points[2 * i] * ctx.scale, points[2 * i + 1] * ctx.scale) } sgl.v2f(points[0] * ctx.scale, points[1] * ctx.scale) sgl.end() } // draw_cubic_bezier draws a cubic Bézier curve, also known as a spline, from four points. // The four points is provided as one `points` array which contains a stream of point pairs (x and y coordinates). // Thus a cubic Bézier could be declared as: `points := [x1, y1, control_x1, control_y1, control_x2, control_y2, x2, y2]`. // Please see `draw_cubic_bezier_in_steps` to control the amount of steps (segments) used to draw the curve. pub fn (ctx &Context) draw_cubic_bezier(points []f32, c gx.Color) { ctx.draw_cubic_bezier_in_steps(points, u32(30 * ctx.scale), c) } // draw_cubic_bezier_in_steps draws a cubic Bézier curve, also known as a spline, from four points. // The smoothness of the curve can be controlled with the `steps` parameter. `steps` determines how many iterations is // taken to draw the curve. // The four points is provided as one `points` array which contains a stream of point pairs (x and y coordinates). // Thus a cubic Bézier could be declared as: `points := [x1, y1, control_x1, control_y1, control_x2, control_y2, x2, y2]`. pub fn (ctx &Context) draw_cubic_bezier_in_steps(points []f32, steps u32, c gx.Color) { assert steps > 0 assert points.len == 8 if c.a != 255 { sgl.load_pipeline(ctx.timage_pip) } sgl.c4b(c.r, c.g, c.b, c.a) sgl.begin_line_strip() p1_x, p1_y := points[0], points[1] p2_x, p2_y := points[6], points[7] ctrl_p1_x, ctrl_p1_y := points[2], points[3] ctrl_p2_x, ctrl_p2_y := points[4], points[5] // The constant 3 is actually points.len() - 1; step := f32(1.0) / steps sgl.v2f(p1_x * ctx.scale, p1_y * ctx.scale) for u := f32(0.0); u <= f32(1.0); u += step { pow_2_u := u * u pow_3_u := pow_2_u * u x := pow_3_u * (p2_x + 3 * (ctrl_p1_x - ctrl_p2_x) - p1_x) + 3 * pow_2_u * (p1_x - 2 * ctrl_p1_x + ctrl_p2_x) + 3 * u * (ctrl_p1_x - p1_x) + p1_x y := pow_3_u * (p2_y + 3 * (ctrl_p1_y - ctrl_p2_y) - p1_y) + 3 * pow_2_u * (p1_y - 2 * ctrl_p1_y + ctrl_p2_y) + 3 * u * (ctrl_p1_y - p1_y) + p1_y sgl.v2f(x * ctx.scale, y * ctx.scale) } sgl.v2f(p2_x * ctx.scale, p2_y * ctx.scale) sgl.end() } // window_size returns the `Size` of the active window pub fn window_size() Size { s := dpi_scale() return Size{int(sapp.width() / s), int(sapp.height() / s)} } // window_size_real_pixels returns the `Size` of the active window without scale pub fn window_size_real_pixels() Size { return Size{sapp.width(), sapp.height()} } pub fn dpi_scale() f32 { mut s := sapp.dpi_scale() $if android { s *= android_dpi_scale() } // NB: on older X11, `Xft.dpi` from ~/.Xresources, that sokol uses, // may not be set which leads to sapp.dpi_scale reporting incorrectly 0.0 if s < 0.1 { s = 1.0 } return s }