// Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module builtin import strings // B-trees are balanced search trees with all leaves at // the same level. B-trees are generally faster than // binary search trees due to the better locality of // reference, since multiple keys are stored in one node. // The number for `degree` has been picked through vigor- // ous benchmarking but can be changed to any number > 1. // `degree` determines the size of each node. const ( degree = 6 mid_index = degree - 1 max_size = 2 * degree - 1 children_bytes = sizeof(voidptr) * (max_size + 1) ) pub struct map { value_bytes int mut: root &mapnode pub mut: size int } struct mapnode { mut: keys [11]string // TODO: Should use `max_size` values [11]voidptr // TODO: Should use `max_size` children &voidptr size int } fn new_map(n, value_bytes int) map { // TODO: Remove `n` return map { value_bytes: value_bytes root: new_node() size: 0 } } fn new_map_init(n, value_bytes int, keys &string, values voidptr) map { mut out := new_map(n, value_bytes) for i in 0 .. n { out.set(keys[i], values + i * value_bytes) } return out } // The tree is initialized with an empty node as root to // avoid having to check whether the root is null for // each insertion. fn new_node() &mapnode { return &mapnode { children: 0 size: 0 } } // This implementation does proactive insertion, meaning // that splits are done top-down and not bottom-up. fn (m mut map) set(key string, value voidptr) { mut node := m.root mut child_index := 0 mut parent := &mapnode(0) for { if node.size == max_size { if isnil(parent) { parent = new_node() m.root = parent } parent.split_child(child_index, mut node) if key == parent.keys[child_index] { C.memcpy(parent.values[child_index], value, m.value_bytes) return } node = if key < parent.keys[child_index] { &mapnode(parent.children[child_index]) } else { &mapnode(parent.children[child_index + 1]) } } mut i := 0 for i < node.size && key > node.keys[i] { i++ } if i != node.size && key == node.keys[i] { C.memcpy(node.values[i], value, m.value_bytes) return } if isnil(node.children) { mut j := node.size - 1 for j >= 0 && key < node.keys[j] { node.keys[j + 1] = node.keys[j] node.values[j + 1] = node.values[j] j-- } node.keys[j + 1] = key node.values[j + 1] = malloc(m.value_bytes) C.memcpy(node.values[j + 1], value, m.value_bytes) node.size++ m.size++ return } parent = node child_index = i node = &mapnode(node.children[child_index]) } } fn (n mut mapnode) split_child(child_index int, y mut mapnode) { mut z := new_node() z.size = mid_index y.size = mid_index for j := mid_index - 1; j >= 0; j-- { z.keys[j] = y.keys[j + degree] z.values[j] = y.values[j + degree] } if !isnil(y.children) { z.children = &voidptr(malloc(children_bytes)) for j := degree - 1; j >= 0; j-- { z.children[j] = y.children[j + degree] } } if isnil(n.children) { n.children = &voidptr(malloc(children_bytes)) } n.children[n.size + 1] = n.children[n.size] for j := n.size; j > child_index; j-- { n.keys[j] = n.keys[j - 1] n.values[j] = n.values[j - 1] n.children[j] = n.children[j - 1] } n.keys[child_index] = y.keys[mid_index] n.values[child_index] = y.values[mid_index] n.children[child_index] = voidptr(y) n.children[child_index + 1] = voidptr(z) n.size++ } fn (m map) get(key string, out voidptr) bool { mut node := m.root for { mut i := node.size - 1 for i >= 0 && key < node.keys[i] { i-- } if i != -1 && key == node.keys[i] { C.memcpy(out, node.values[i], m.value_bytes) return true } if isnil(node.children) { break } node = &mapnode(node.children[i + 1]) } return false } fn (m map) exists(key string) bool { if isnil(m.root) { // TODO: find out why root can be nil return false } mut node := m.root for { mut i := node.size - 1 for i >= 0 && key < node.keys[i] { i-- } if i != -1 && key == node.keys[i] { return true } if isnil(node.children) { break } node = &mapnode(node.children[i + 1]) } return false } fn (n mapnode) find_key(k string) int { mut idx := 0 for idx < n.size && n.keys[idx] < k { idx++ } return idx } fn (n mut mapnode) remove_key(k string) bool { idx := n.find_key(k) if idx < n.size && n.keys[idx] == k { if isnil(n.children) { n.remove_from_leaf(idx) } else { n.remove_from_non_leaf(idx) } return true } else { if isnil(n.children) { return false } flag := if idx == n.size {true} else {false} if (&mapnode(n.children[idx])).size < degree { n.fill(idx) } if flag && idx > n.size { return (&mapnode(n.children[idx - 1])).remove_key(k) } else { return (&mapnode(n.children[idx])).remove_key(k) } } } fn (n mut mapnode) remove_from_leaf(idx int) { for i := idx + 1; i < n.size; i++ { n.keys[i - 1] = n.keys[i] n.values[i - 1] = n.values[i] } n.size-- } fn (n mut mapnode) remove_from_non_leaf(idx int) { k := n.keys[idx] if &mapnode(n.children[idx]).size >= degree { mut current := &mapnode(n.children[idx]) for !isnil(current.children) { current = &mapnode(current.children[current.size]) } predecessor := current.keys[current.size - 1] n.keys[idx] = predecessor n.values[idx] = current.values[current.size - 1] (&mapnode(n.children[idx])).remove_key(predecessor) } else if &mapnode(n.children[idx + 1]).size >= degree { mut current := &mapnode(n.children[idx + 1]) for !isnil(current.children) { current = &mapnode(current.children[0]) } successor := current.keys[0] n.keys[idx] = successor n.values[idx] = current.values[0] (&mapnode(n.children[idx + 1])).remove_key(successor) } else { n.merge(idx) (&mapnode(n.children[idx])).remove_key(k) } } fn (n mut mapnode) fill(idx int) { if idx != 0 && &mapnode(n.children[idx - 1]).size >= degree { n.borrow_from_prev(idx) } else if idx != n.size && &mapnode(n.children[idx + 1]).size >= degree { n.borrow_from_next(idx) } else if idx != n.size { n.merge(idx) } else { n.merge(idx - 1) } } fn (n mut mapnode) borrow_from_prev(idx int) { mut child := &mapnode(n.children[idx]) mut sibling := &mapnode(n.children[idx - 1]) for i := child.size - 1; i >= 0; i-- { child.keys[i + 1] = child.keys[i] child.values[i + 1] = child.values[i] } if !isnil(child.children) { for i := child.size; i >= 0; i-- { child.children[i + 1] = child.children[i] } } child.keys[0] = n.keys[idx - 1] child.values[0] = n.values[idx - 1] if !isnil(child.children) { child.children[0] = sibling.children[sibling.size] } n.keys[idx - 1] = sibling.keys[sibling.size - 1] n.values[idx - 1] = sibling.values[sibling.size - 1] child.size++ sibling.size-- } fn (n mut mapnode) borrow_from_next(idx int) { mut child := &mapnode(n.children[idx]) mut sibling := &mapnode(n.children[idx + 1]) child.keys[child.size] = n.keys[idx] child.values[child.size] = n.values[idx] if !isnil(child.children) { child.children[child.size + 1] = sibling.children[0] } n.keys[idx] = sibling.keys[0] n.values[idx] = sibling.values[0] for i := 1; i < sibling.size; i++ { sibling.keys[i - 1] = sibling.keys[i] sibling.values[i - 1] = sibling.values[i] } if !isnil(sibling.children) { for i := 1; i <= sibling.size; i++ { sibling.children[i - 1] = sibling.children[i] } } child.size++ sibling.size-- } fn (n mut mapnode) merge(idx int) { mut child := &mapnode(n.children[idx]) sibling := &mapnode(n.children[idx + 1]) child.keys[mid_index] = n.keys[idx] child.values[mid_index] = n.values[idx] for i := 0; i < sibling.size; i++ { child.keys[i + degree] = sibling.keys[i] child.values[i + degree] = sibling.values[i] } if !isnil(child.children) { for i := 0; i <= sibling.size; i++ { child.children[i + degree] = sibling.children[i] } } for i := idx + 1; i < n.size; i++ { n.keys[i - 1] = n.keys[i] n.values[i - 1] = n.values[i] } for i := idx + 2; i <= n.size; i++ { n.children[i - 1] = n.children[i] } child.size += sibling.size + 1 n.size-- // free(sibling) } pub fn (m mut map) delete(key string) { if m.root.size == 0 { return } removed := m.root.remove_key(key) if removed { m.size-- } if m.root.size == 0 { // tmp := t.root if isnil(m.root.children) { return } else { m.root = &mapnode(m.root.children[0]) } // free(tmp) } } // Insert all keys of the subtree into array `keys` // starting at `at`. Keys are inserted in order. fn (n mapnode) subkeys(keys mut []string, at int) int { mut position := at if !isnil(n.children) { // Traverse children and insert // keys inbetween children for i in 0..n.size { child := &mapnode(n.children[i]) position += child.subkeys(mut keys, position) keys[position] = n.keys[i] position++ } // Insert the keys of the last child child := &mapnode(n.children[n.size]) position += child.subkeys(mut keys, position) } else { // If leaf, insert keys for i in 0..n.size { keys[position + i] = n.keys[i] } position += n.size } // Return # of added keys return position - at } pub fn (m &map) keys() []string { mut keys := [''].repeat(m.size) if isnil(m.root) || m.root.size == 0 { return keys } m.root.subkeys(mut keys, 0) return keys } fn (n mut mapnode) free() { mut i := 0 if isnil(n.children) { i = 0 for i < n.size { i++ } } else { i = 0 for i < n.size { &mapnode(n.children[i]).free() i++ } &mapnode(n.children[i]).free() } // free(n) } pub fn (m mut map) free() { if isnil(m.root) { return } m.root.free() } pub fn (m map) print() { println('<<<<<<<<') //for i := 0; i < m.entries.len; i++ { // entry := m.entries[i] // println('$entry.key => $entry.val') //} /* for i := 0; i < m.cap * m.value_bytes; i++ { b := m.table[i] print('$i: ') C.printf('%02x', b) println('') } */ println('>>>>>>>>>>') } pub fn (m map_string) str() string { if m.size == 0 { return '{}' } mut sb := strings.new_builder(50) sb.writeln('{') for key, val in m { sb.writeln(' "$key" => "$val"') } sb.writeln('}') return sb.str() }