import math import math.complex as cmplx fn tst_res(str1 string, str2 string) bool { if (math.abs(str1.f64() - str2.f64())) < 1e-5 { return true } return false } fn test_complex_addition() { // Test is based on and verified from practice examples of Khan Academy // https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers mut c1 := cmplx.complex(0, -10) mut c2 := cmplx.complex(-40, 8) mut result := c1 + c2 assert result.equals(cmplx.complex(-40, -2)) c1 = cmplx.complex(-71, 2) c2 = cmplx.complex(88, -12) result = c1 + c2 assert result.equals(cmplx.complex(17, -10)) c1 = cmplx.complex(0, -30) c2 = cmplx.complex(52, -30) result = c1 + c2 assert result.equals(cmplx.complex(52, -60)) c1 = cmplx.complex(12, -9) c2 = cmplx.complex(32, -6) result = c1 + c2 assert result.equals(cmplx.complex(44, -15)) } fn test_complex_subtraction() { // Test is based on and verified from practice examples of Khan Academy // https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers mut c1 := cmplx.complex(-8, 0) mut c2 := cmplx.complex(6, 30) mut result := c1 - c2 assert result.equals(cmplx.complex(-14, -30)) c1 = cmplx.complex(-19, 7) c2 = cmplx.complex(29, 32) result = c1 - c2 assert result.equals(cmplx.complex(-48, -25)) c1 = cmplx.complex(12, 0) c2 = cmplx.complex(23, 13) result = c1 - c2 assert result.equals(cmplx.complex(-11, -13)) c1 = cmplx.complex(-14, 3) c2 = cmplx.complex(0, 14) result = c1 - c2 assert result.equals(cmplx.complex(-14, -11)) } fn test_complex_multiplication() { // Test is based on and verified from practice examples of Khan Academy // https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers mut c1 := cmplx.complex(1, 2) mut c2 := cmplx.complex(1, -4) mut result := c1 * c2 assert result.equals(cmplx.complex(9, -2)) c1 = cmplx.complex(-4, -4) c2 = cmplx.complex(-5, -3) result = c1 * c2 assert result.equals(cmplx.complex(8, 32)) c1 = cmplx.complex(4, 4) c2 = cmplx.complex(-2, -5) result = c1 * c2 assert result.equals(cmplx.complex(12, -28)) c1 = cmplx.complex(2, -2) c2 = cmplx.complex(4, -4) result = c1 * c2 assert result.equals(cmplx.complex(0, -16)) } fn test_complex_division() { // Test is based on and verified from practice examples of Khan Academy // https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers mut c1 := cmplx.complex(-9, -6) mut c2 := cmplx.complex(-3, -2) mut result := c1 / c2 assert result.equals(cmplx.complex(3, 0)) c1 = cmplx.complex(-23, 11) c2 = cmplx.complex(5, 1) result = c1 / c2 assert result.equals(cmplx.complex(-4, 3)) c1 = cmplx.complex(8, -2) c2 = cmplx.complex(-4, 1) result = c1 / c2 assert result.equals(cmplx.complex(-2, 0)) c1 = cmplx.complex(11, 24) c2 = cmplx.complex(-4, -1) result = c1 / c2 assert result.equals(cmplx.complex(-4, -5)) } fn test_complex_conjugate() { // Test is based on and verified from practice examples of Khan Academy // https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers mut c1 := cmplx.complex(0, 8) mut result := c1.conjugate() assert result.equals(cmplx.complex(0, -8)) c1 = cmplx.complex(7, 3) result = c1.conjugate() assert result.equals(cmplx.complex(7, -3)) c1 = cmplx.complex(2, 2) result = c1.conjugate() assert result.equals(cmplx.complex(2, -2)) c1 = cmplx.complex(7, 0) result = c1.conjugate() assert result.equals(cmplx.complex(7, 0)) } fn test_complex_equals() { mut c1 := cmplx.complex(0, 8) mut c2 := cmplx.complex(0, 8) assert c1.equals(c2) c1 = cmplx.complex(-3, 19) c2 = cmplx.complex(-3, 19) assert c1.equals(c2) } fn test_complex_abs() { mut c1 := cmplx.complex(3, 4) assert c1.abs() == 5 c1 = cmplx.complex(1, 2) assert c1.abs() == math.sqrt(5) assert c1.abs() == c1.conjugate().abs() c1 = cmplx.complex(7, 0) assert c1.abs() == 7 } fn test_complex_angle() { // Test is based on and verified from practice examples of Khan Academy // https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers mut c := cmplx.complex(1, 0) assert c.angle() * 180 / math.pi == 0 c = cmplx.complex(1, 1) assert c.angle() * 180 / math.pi == 45 c = cmplx.complex(0, 1) assert c.angle() * 180 / math.pi == 90 c = cmplx.complex(-1, 1) assert c.angle() * 180 / math.pi == 135 c = cmplx.complex(-1, -1) assert c.angle() * 180 / math.pi == -135 cc := c.conjugate() assert cc.angle() + c.angle() == 0 } fn test_complex_addinv() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(-5, -7) mut result := c1.addinv() assert result.equals(c2) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(3, -4) result = c1.addinv() assert result.equals(c2) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(1, 2) result = c1.addinv() assert result.equals(c2) } fn test_complex_mulinv() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(0.067568, -0.094595) mut result := c1.mulinv() // Some issue with precision comparison in f64 using == operator hence serializing to string println(c2.str()) println(result.str()) assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(-0.12, -0.16) result = c1.mulinv() assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(-0.2, 0.4) result = c1.mulinv() assert result.equals(c2) } fn test_complex_mod() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut result := c1.mod() // Some issue with precision comparison in f64 using == operator hence serializing to string assert tst_res(result.str(), '8.602325') c1 = cmplx.complex(-3, 4) result = c1.mod() assert result == 5 c1 = cmplx.complex(-1, -2) result = c1.mod() // Some issue with precision comparison in f64 using == operator hence serializing to string assert tst_res(result.str(), '2.236068') } fn test_complex_pow() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(-24.0, 70.0) mut result := c1.pow(2) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(117, 44) result = c1.pow(3) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(-7, -24) result = c1.pow(4) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_root() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(2.607904, 1.342074) mut result := c1.root(2) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(1.264953, 1.150614) result = c1.root(3) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(1.068059, -0.595482) result = c1.root(4) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_exp() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(111.889015, 97.505457) mut result := c1.exp() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(-0.032543, -0.037679) result = c1.exp() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(-0.153092, -0.334512) result = c1.exp() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_ln() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(2.152033, 0.950547) mut result := c1.ln() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(1.609438, 2.214297) result = c1.ln() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(0.804719, -2.034444) result = c1.ln() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_arg() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(2.152033, 0.950547) mut result := c1.arg() // Some issue with precision comparison in f64 using == operator hence serializing to string assert tst_res(result.str(), '0.950547') c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(1.609438, 2.214297) result = c1.arg() // Some issue with precision comparison in f64 using == operator hence serializing to string assert tst_res(result.str(), '2.214297') c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(0.804719, -2.034444) result = c1.arg() // Some issue with precision comparison in f64 using == operator hence serializing to string assert tst_res(result.str(), '-2.034444') } fn test_complex_log() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut b1 := cmplx.complex(-6, -2) mut c2 := cmplx.complex(0.232873, -1.413175) mut result := c1.log(b1) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) b1 = cmplx.complex(3, -1) c2 = cmplx.complex(0.152198, -0.409312) result = c1.log(b1) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) b1 = cmplx.complex(0, 9) c2 = cmplx.complex(-0.298243, 1.197981) result = c1.log(b1) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_cpow() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut r1 := cmplx.complex(2, 2) mut c2 := cmplx.complex(11.022341, -0.861785) mut result := c1.cpow(r1) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) r1 = cmplx.complex(-4, -2) c2 = cmplx.complex(0.118303, 0.063148) result = c1.cpow(r1) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) r1 = cmplx.complex(8, -9) c2 = cmplx.complex(-0.000000, 0.000007) result = c1.cpow(r1) // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_sin() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(-525.794515, 155.536550) mut result := c1.sin() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(-3.853738, -27.016813) result = c1.sin() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(-3.165779, -1.959601) result = c1.sin() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_cos() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(155.536809, 525.793641) mut result := c1.cos() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(-27.034946, 3.851153) result = c1.cos() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(2.032723, -3.051898) result = c1.cos() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_tan() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(-0.000001, 1.000001) mut result := c1.tan() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(0.000187, 0.999356) result = c1.tan() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(-0.033813, -1.014794) result = c1.tan() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_cot() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(-0.000001, -0.999999) mut result := c1.cot() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(0.000188, -1.000644) result = c1.cot() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(-0.032798, 0.984329) result = c1.cot() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_sec() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(0.000517, -0.001749) mut result := c1.sec() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(-0.036253, -0.005164) result = c1.sec() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(0.151176, 0.226974) result = c1.sec() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_csc() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(-0.001749, -0.000517) mut result := c1.csc() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(-0.005174, 0.036276) result = c1.csc() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(-0.228375, 0.141363) result = c1.csc() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_asin() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(0.617064, 2.846289) mut result := c1.asin() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(-0.633984, 2.305509) result = c1.asin() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(-0.427079, -1.528571) result = c1.asin() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_acos() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(0.953732, -2.846289) mut result := c1.acos() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(2.204780, -2.305509) result = c1.acos() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(1.997875, 1.528571) result = c1.acos() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_atan() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(1.502727, 0.094441) mut result := c1.atan() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(-1.448307, 0.158997) result = c1.atan() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(-1.338973, -0.402359) result = c1.atan() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_acot() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(0.068069, -0.094441) mut result := c1.acot() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(-0.122489, -0.158997) result = c1.acot() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(-0.231824, 0.402359) result = c1.acot() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_asec() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(1.503480, 0.094668) mut result := c1.asec() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(1.689547, 0.160446) result = c1.asec() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(1.757114, -0.396568) result = c1.asec() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_acsc() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(0.067317, -0.094668) mut result := c1.acsc() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(-0.118751, -0.160446) result = c1.acsc() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(-0.186318, 0.396568) result = c1.acsc() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_sinh() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(55.941968, 48.754942) mut result := c1.sinh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(6.548120, -7.619232) result = c1.sinh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(0.489056, -1.403119) result = c1.sinh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_cosh() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(55.947047, 48.750515) mut result := c1.cosh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(-6.580663, 7.581553) result = c1.cosh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(-0.642148, 1.068607) result = c1.cosh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_tanh() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(0.999988, 0.000090) mut result := c1.tanh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(-1.000710, 0.004908) result = c1.tanh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(-1.166736, 0.243458) result = c1.tanh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_coth() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(1.000012, -0.000090) mut result := c1.coth() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(-0.999267, -0.004901) result = c1.coth() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(-0.821330, -0.171384) result = c1.coth() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_sech() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(0.010160, -0.008853) mut result := c1.sech() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(-0.065294, -0.075225) result = c1.sech() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(-0.413149, -0.687527) result = c1.sech() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_csch() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(0.010159, -0.008854) mut result := c1.csch() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(0.064877, 0.075490) result = c1.csch() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(0.221501, 0.635494) result = c1.csch() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_asinh() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(2.844098, 0.947341) mut result := c1.asinh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(-2.299914, 0.917617) result = c1.asinh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(-1.469352, -1.063440) result = c1.asinh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_acosh() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(2.846289, 0.953732) mut result := c1.acosh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(2.305509, 2.204780) result = c1.acosh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(1.528571, -1.997875) result = c1.acosh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_atanh() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(0.067066, 1.476056) mut result := c1.atanh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(-0.117501, 1.409921) result = c1.atanh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(-0.173287, -1.178097) result = c1.atanh() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_acoth() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(0.067066, -0.094740) mut result := c1.acoth() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(-0.117501, -0.160875) result = c1.acoth() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(-0.173287, 0.392699) result = c1.acoth() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } // fn test_complex_asech() { // // Tests were also verified on Wolfram Alpha // mut c1 := cmplx.complex(5,7) // mut c2 := cmplx.complex(0.094668,-1.503480) // mut result := c1.asech() // // Some issue with precision comparison in f64 using == operator hence serializing to string // assert result.str().eq(c2.str()) // c1 = cmplx.complex(-3,4) // c2 = cmplx.complex(0.160446,-1.689547) // result = c1.asech() // // Some issue with precision comparison in f64 using == operator hence serializing to string // assert result.str().eq(c2.str()) // c1 = cmplx.complex(-1,-2) // c2 = cmplx.complex(0.396568,1.757114) // result = c1.asech() // // Some issue with precision comparison in f64 using == operator hence serializing to string // assert result.str().eq(c2.str()) // } fn test_complex_acsch() { // Tests were also verified on Wolfram Alpha mut c1 := cmplx.complex(5, 7) mut c2 := cmplx.complex(0.067819, -0.094518) mut result := c1.acsch() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-3, 4) c2 = cmplx.complex(-0.121246, -0.159507) result = c1.acsch() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) c1 = cmplx.complex(-1, -2) c2 = cmplx.complex(-0.215612, 0.401586) result = c1.acsch() // Some issue with precision comparison in f64 using == operator hence serializing to string assert result.str().eq(c2.str()) } fn test_complex_re_im() { c := cmplx.complex(2.1, 9.05) assert c.re == 2.1 assert c.im == 9.05 }