/* Exploring PRIMS, The data example is from https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/ by CCS PS: all the pre-requisites of Dijkstra are considered $ v run file_name.v Creating a executable $ v run file_name.v -o an_executable.EXE $ ./an_executable.EXE Code based from : Data Structures and Algorithms Made Easy: Data Structures and Algorithmic Puzzles, Fifth Edition (English Edition) pseudo code written in C This idea is quite different: it uses a priority queue to store the current shortest path evaluted The priority queue structure built using a list to simulate the queue. A heap is not used in this case. */ // a structure struct NODE { mut: data int // number of nodes priority int // Lower values priority indicate ==> higher priority } // Function to push according to priority ... the lower priority is goes ahead // The "push" always sorted in pq fn push_pq(mut prior_queue []T, data int, priority int) { mut temp := []T{} lenght_pq := prior_queue.len mut i := 0 for (i < lenght_pq) && (priority > prior_queue[i].priority) { temp << prior_queue[i] i++ } // INSERTING SORTED in the queue temp << NODE{data, priority} // do the copy in the right place // copy the another part (tail) of original prior_queue for i < lenght_pq { temp << prior_queue[i] i++ } prior_queue = temp.clone() // I am not sure if it the right way // IS IT THE RIGHT WAY? } // Change the priority of a value/node ... exist a value, change its priority fn updating_priority(mut prior_queue []T, search_data int, new_priority int) { mut i := 0 mut lenght_pq := prior_queue.len for i < lenght_pq { if search_data == prior_queue[i].data { prior_queue[i] = NODE{search_data, new_priority} // do the copy in the right place break } i++ // all the list was examined if i >= lenght_pq { // print('\n Priority Queue: ${prior_queue}') // print('\n These data ${search_data} and ${new_priority} do not exist ... PRIORITY QUEUE problem\n') // if it does not find ... then push it push_pq(mut prior_queue, search_data, new_priority) // exit(1) // panic(s string) } } // end for } // a single departure or remove from queue fn departure_priority(mut prior_queue []T) int { mut x := prior_queue[0].data prior_queue.delete(0) // or .delete_many(0, 1 ) return x } // give a NODE v, return a list with all adjacents // Take care, only positive EDGES fn all_adjacents(g [][]T, v int) []int { mut temp := []int{} // for i in 0 .. (g.len) { if g[v][i] > 0 { temp << i } } return temp } // print the costs from origin up to all nodes // A utility function to print the // constructed MST stored in parent[] // print all paths and their cost or weight fn print_solution(path []int, g [][]int) { // print(' PATH: ${path} ==> ${path.len}') print(' Edge \tWeight\n') mut sum := 0 for node in 0 .. (path.len) { if path[node] == -1 { print('\n $node <== reference or start node') } else { print('\n $node <--> ${path[node]} \t${g[node][path[node]]}') sum += g[node][path[node]] } } print('\n Minimum Cost Spanning Tree: $sum\n\n') } // check structure from: https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/ // s: source for all nodes // Two results are obtained ... cost and paths fn prim_mst(g [][]int, s int) { mut pq_queue := []NODE{} // creating a priority queue push_pq(mut pq_queue, s, 0) // goes s with priority 0 mut n := g.len mut dist := []int{len: n, init: -1} // dist with -1 instead of INIFINITY mut path := []int{len: n, init: -1} // previous node of each shortest paht // Distance of source vertex from itself is always 0 dist[s] = 0 for pq_queue.len != 0 { mut v := departure_priority(mut pq_queue) // for all W adjcents vertices of v mut adjs_of_v := all_adjacents(g, v) // all_ADJ of v .... // print('\n :${dist} :: ${pq_queue}') // print('\n ADJ ${v} is ${adjs_of_v}') mut new_dist := 0 for w in adjs_of_v { new_dist = dist[v] + g[v][w] if dist[w] == -1 { dist[w] = g[v][w] push_pq(mut pq_queue, w, dist[w]) path[w] = v // collecting the previous node -- lowest weight } if dist[w] > new_dist { dist[w] = g[v][w] // new_dist// updating_priority(mut pq_queue, w, dist[w]) path[w] = v // father / previous node } } } // print('\n \n Previous node of shortest path: ${path}') // print_paths_dist(path , dist) print_solution(path, g) } /* Solution Expected graph_02 Edge Weight 0 - 1 2 1 - 2 3 0 - 3 6 1 - 4 5 */ fn main() { // adjacency matrix = cost or weight graph_01 := [ [0, 4, 0, 0, 0, 0, 0, 8, 0], [4, 0, 8, 0, 0, 0, 0, 11, 0], [0, 8, 0, 7, 0, 4, 0, 0, 2], [0, 0, 7, 0, 9, 14, 0, 0, 0], [0, 0, 0, 9, 0, 10, 0, 0, 0], [0, 0, 4, 14, 10, 0, 2, 0, 0], [0, 0, 0, 0, 0, 2, 0, 1, 6], [8, 11, 0, 0, 0, 0, 1, 0, 7], [0, 0, 2, 0, 0, 0, 6, 7, 0], ] graph_02 := [ [0, 2, 0, 6, 0], [2, 0, 3, 8, 5], [0, 3, 0, 0, 7], [6, 8, 0, 0, 9], [0, 5, 7, 9, 0], ] // data from https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/ /* The graph: 2 3 (0)--(1)--(2) | / \ | 6| 8/ \5 |7 | / \ | (3)-------(4) 9 */ /* Let us create following weighted graph From https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/?ref=lbp 10 0--------1 | \ | 6| 5\ |15 | \ | 2--------3 4 */ graph_03 := [ [0, 10, 6, 5], [10, 0, 0, 15], [6, 0, 0, 4], [5, 15, 4, 0], ] // To find number of coluns // mut cols := an_array[0].len mut graph := [][]int{} // the graph: adjacency matrix // for index, g_value in [graph_01, graph_02, graph_03] { for index, g_value in [graph_01, graph_02, graph_03] { println('\n Minimal Spanning Tree of graph ${index + 1} using PRIM algorithm') graph = g_value.clone() // graphs_sample[g].clone() // choice your SAMPLE // starting by node x ... see the graphs dimmension start_node := 0 prim_mst(graph, start_node) } println('\n BYE -- OK') } //********************************************************************