// Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module builtin import strings struct array { pub: // Using a void pointer allows to implement arrays without generics and without generating // extra code for every type. data voidptr len int cap int element_size int } /* struct Foo { a []string b [][]string } */ // Internal function, used by V (`nums := []int`) fn new_array(mylen int, cap int, elm_size int) array { cap_ := if cap == 0 { 1 } else { cap } arr := array{ len: mylen cap: cap_ element_size: elm_size data: calloc(cap_ * elm_size) } return arr } // TODO pub fn make(len int, cap int, elm_size int) array { return new_array(len, cap, elm_size) } // Private function, used by V (`nums := [1, 2, 3]`) fn new_array_from_c_array(len, cap, elm_size int, c_array voidptr) array { cap_ := if cap == 0 { 1 } else { cap } arr := array{ len: len cap: cap element_size: elm_size data: calloc(cap_ * elm_size) } // TODO Write all memory functions (like memcpy) in V C.memcpy(arr.data, c_array, len * elm_size) return arr } // Private function, used by V (`nums := [1, 2, 3] !`) fn new_array_from_c_array_no_alloc(len, cap, elm_size int, c_array voidptr) array { arr := array{ len: len cap: cap element_size: elm_size data: c_array } return arr } // Private function. Doubles array capacity if needed fn (a mut array) ensure_cap(required int) { if required > a.cap { mut cap := if a.cap == 0 { 2 } else { a.cap * 2 } for required > cap && true { cap *= 2 } if a.cap == 0 { a.data = calloc(cap * a.element_size) } else { a.data = C.realloc(a.data, cap * a.element_size) } a.cap = cap } } // array.repeat returns new array with the given array elements // repeated `nr_repeat` times pub fn (a array) repeat(nr_repeats int) array { if nr_repeats < 0 { panic('array.repeat: count is negative (count == nr_repeats)') } mut size := nr_repeats * a.len * a.element_size if size == 0 { size = a.element_size } arr := array{ len: nr_repeats * a.len cap: nr_repeats * a.len element_size: a.element_size data: calloc(size) } for i := 0; i < nr_repeats; i++ { C.memcpy(arr.data + i * a.len * a.element_size, a.data, a.len * a.element_size) } return arr } // array.sort sorts array in-place using given `compare` function as comparator pub fn (a mut array) sort_with_compare(compare voidptr) { C.qsort(a.data, a.len, a.element_size, compare) } // TODO array.insert is broken // Cannot pass literal or primitive type as it cannot be cast to voidptr. // In the current state only that would work: // i := 3 // a.insert(0, &i) // ---------------------------- pub fn (a mut array) insert(i int, val voidptr) { if i < 0 || i > a.len { panic('array.insert: index out of range (i == $i, a.len == $a.len)') } a.ensure_cap(a.len + 1) size := a.element_size C.memmove(a.data + (i + 1) * size, a.data + i * size, (a.len - i) * size) C.memcpy(a.data + i * size, val, size) a.len++ } // TODO array.prepend is broken // It depends on array.insert // ----------------------------- pub fn (a mut array) prepend(val voidptr) { a.insert(0, val) } // array.delete deletes array element at the given index pub fn (a mut array) delete(i int) { if i < 0 || i >= a.len { panic('array.delete: index out of range (i == $i, a.len == $a.len)') } size := a.element_size C.memmove(a.data + i * size, a.data + (i + 1) * size, (a.len - i) * size) a.len-- } // Private function. Used to implement array[] operator fn (a array) get(i int) voidptr { if i < 0 || i >= a.len { panic('array.get: index out of range (i == $i, a.len == $a.len)') } return a.data + i * a.element_size } // array.first returns the first element of the array pub fn (a array) first() voidptr { if a.len == 0 { panic('array.first: array is empty') } return a.data + 0 } // array.last returns the last element of the array pub fn (a array) last() voidptr { if a.len == 0 { panic('array.last: array is empty') } return a.data + (a.len - 1) * a.element_size } /* // array.left returns a new array using the same buffer as the given array // with the first `n` elements of the given array. fn (a array) left(n int) array { if n < 0 { panic('array.left: index is negative (n == $n)') } if n >= a.len { return a.slice(0, a.len) } return a.slice(0, n) } // array.right returns an array using same buffer as the given array // but starting with the element of the given array beyond the index `n`. // If `n` is bigger or equal to the length of the given array, // returns an empty array of the same type as the given array. fn (a array) right(n int) array { if n < 0 { panic('array.right: index is negative (n == $n)') } if n >= a.len { return new_array(0, 0, a.element_size) } return a.slice(n, a.len) } */ // array.slice returns an array using the same buffer as original array // but starting from the `start` element and ending with the element before // the `end` element of the original array with the length and capacity // set to the number of the elements in the slice. fn (a array) slice(start, _end int) array { mut end := _end if start > end { panic('array.slice: invalid slice index ($start > $end)') } if end > a.len { panic('array.slice: slice bounds out of range ($end >= $a.len)') } if start < 0 { panic('array.slice: slice bounds out of range ($start < 0)') } l := end - start res := array{ element_size: a.element_size data: a.data + start * a.element_size len: l cap: l } return res } // used internally for [2..4] fn (a array) slice2(start, _end int, end_max bool) array { end := if end_max { a.len } else { _end } return a.slice(start, end) } // array.clone returns an independent copy of a given array pub fn (a array) clone() array { mut size := a.cap * a.element_size if size == 0 { size++ } arr := array{ len: a.len cap: a.cap element_size: a.element_size data: calloc(size) } C.memcpy(arr.data, a.data, a.cap * a.element_size) return arr } fn (a array) slice_clone(start, _end int) array { mut end := _end if start > end { panic('array.slice: invalid slice index ($start > $end)') } if end > a.len { panic('array.slice: slice bounds out of range ($end >= $a.len)') } if start < 0 { panic('array.slice: slice bounds out of range ($start < 0)') } l := end - start res := array{ element_size: a.element_size data: a.data + start * a.element_size len: l cap: l } return res.clone() } // Private function. Used to implement assigment to the array element. fn (a mut array) set(i int, val voidptr) { if i < 0 || i >= a.len { panic('array.set: index out of range (i == $i, a.len == $a.len)') } C.memcpy(a.data + a.element_size * i, val, a.element_size) } fn (a mut array) push(val voidptr) { a.ensure_cap(a.len + 1) C.memcpy(a.data + a.element_size * a.len, val, a.element_size) a.len++ } // `val` is array.data // TODO make private, right now it's used by strings.Builder pub fn (a mut array) push_many(val voidptr, size int) { a.ensure_cap(a.len + size) C.memcpy(a.data + a.element_size * a.len, val, a.element_size * size) a.len += size } // array.reverse returns a new array with the elements of // the original array in reverse order. pub fn (a array) reverse() array { arr := array{ len: a.len cap: a.cap element_size: a.element_size data: calloc(a.cap * a.element_size) } for i := 0; i < a.len; i++ { C.memcpy(arr.data + i * arr.element_size, &a[a.len - 1 - i], arr.element_size) } return arr } // pub fn (a []int) free() { [unsafe_fn] pub fn (a array) free() { // if a.is_slice { // return // } C.free(a.data) } // []string.str returns a string representation of the array of strings // "[ 'a', 'b', 'c' ]" pub fn (a []string) str() string { mut sb := strings.new_builder(a.len * 3) sb.write('[') for i := 0; i < a.len; i++ { val := a[i] sb.write('"') sb.write(val) sb.write('"') if i < a.len - 1 { sb.write(', ') } } sb.write(']') return sb.str() } // []bool.str returns a string representation of the array of bools // "[true, true, false]" pub fn (a []bool) str() string { mut sb := strings.new_builder(a.len * 3) sb.write('[') for i := 0; i < a.len; i++ { val := a[i] if val { sb.write('true') } else { sb.write('false') } if i < a.len - 1 { sb.write(', ') } } sb.write(']') return sb.str() } // []byte.hex returns a string with the hexadecimal representation // of the byte elements of the array pub fn (b []byte) hex() string { mut hex := malloc(b.len * 2 + 1) mut ptr := &hex[0] for i := 0; i < b.len; i++ { ptr += C.sprintf(charptr(ptr), '%02x', b[i]) } return string(hex) } // copy copies the `src` byte array elements to the `dst` byte array. // The number of the elements copied is the minimum of the length of both arrays. // Returns the number of elements copied. // TODO: implement for all types pub fn copy(dst, src []byte) int { if dst.len > 0 && src.len > 0 { min := if dst.len < src.len { dst.len } else { src.len } C.memcpy(dst.data, src[..min].data, dst.element_size * min) return min } return 0 } // Private function. Comparator for int type. fn compare_ints(a, b &int) int { if *a < *b { return -1 } if *a > *b { return 1 } return 0 } // []int.sort sorts array of int in place in ascending order. pub fn (a mut []int) sort() { a.sort_with_compare(compare_ints) } // []string.index returns the index of the first element equal to the given value, // or -1 if the value is not found in the array. pub fn (a []string) index(v string) int { for i := 0; i < a.len; i++ { if a[i] == v { return i } } return -1 } // []int.index returns the index of the first element equal to the given value, // or -1 if the value is not found in the array. pub fn (a []int) index(v int) int { for i := 0; i < a.len; i++ { if a[i] == v { return i } } return -1 } // []byte.index returns the index of the first element equal to the given value, // or -1 if the value is not found in the array. pub fn (a []byte) index(v byte) int { for i := 0; i < a.len; i++ { if a[i] == v { return i } } return -1 } // []char.index returns the index of the first element equal to the given value, // or -1 if the value is not found in the array. // TODO is `char` type yet in the language? pub fn (a []char) index(v char) int { for i := 0; i < a.len; i++ { if a[i] == v { return i } } return -1 } // []int.reduce executes a given reducer function on each element of the array, // resulting in a single output value. pub fn (a []int) reduce(iter fn(accum, curr int)int, accum_start int) int { mut _accum := 0 _accum = accum_start for i := 0; i < a.len; i++ { _accum = iter(_accum, a[i]) } return _accum } // array_eq checks if two arrays contain all the same elements in the same order. // []int == []int (also for: i64, f32, f64, byte, string) fn array_eq(a1, a2 []T) bool { if a1.len != a2.len { return false } for i := 0; i < a1.len; i++ { if a1[i] != a2[i] { return false } } return true } pub fn (a []int) eq(a2 []int) bool { return array_eq(a, a2) } pub fn (a []i64) eq(a2 []i64) bool { return array_eq(a, a2) } pub fn (a []string) eq(a2 []string) bool { return array_eq(a, a2) } pub fn (a []byte) eq(a2 []byte) bool { return array_eq(a, a2) } pub fn (a []f32) eq(a2 []f32) bool { return array_eq(a, a2) }