// Copyright (c) 2019 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module cmath import math struct Complex { re f64 im f64 } pub fn complex(re f64, im f64) Complex { return Complex{re, im} } // To String method pub fn (c Complex) str() string { mut out := '$c.re' out += if c.im >= 0 { '+$c.im' } else { '$c.im' } out += 'i' return out } // Complex Modulus value // mod() and abs() return the same pub fn (c Complex) abs() f64 { return C.hypot(c.re, c.im) } pub fn (c Complex) mod() f64 { return c.abs() } // Complex Angle pub fn (c Complex) angle() f64 { return math.atan2(c.im, c.re) } // Complex Addition c1 + c2 pub fn (c1 Complex) + (c2 Complex) Complex { return Complex{c1.re + c2.re, c1.im + c2.im} } // Complex Substraction c1 - c2 pub fn (c1 Complex) - (c2 Complex) Complex { return Complex{c1.re - c2.re, c1.im - c2.im} } // Complex Multiplication c1 * c2 // Currently Not Supported // pub fn (c1 Complex) * (c2 Complex) Complex { // return Complex{ // (c1.re * c2.re) + ((c1.im * c2.im) * -1), // (c1.re * c2.im) + (c1.im * c2.re) // } // } // Complex Division c1 / c2 // Currently Not Supported // pub fn (c1 Complex) / (c2 Complex) Complex { // denom := (c2.re * c2.re) + (c2.im * c2.im) // return Complex { // ((c1.re * c2.re) + ((c1.im * -c2.im) * -1))/denom, // ((c1.re * -c2.im) + (c1.im * c2.re))/denom // } // } // Complex Addition c1.add(c2) pub fn (c1 Complex) add(c2 Complex) Complex { return c1 + c2 } // Complex Subtraction c1.subtract(c2) pub fn (c1 Complex) subtract(c2 Complex) Complex { return c1 - c2 } // Complex Multiplication c1.multiply(c2) pub fn (c1 Complex) multiply(c2 Complex) Complex { return Complex{ (c1.re * c2.re) + ((c1.im * c2.im) * -1), (c1.re * c2.im) + (c1.im * c2.re) } } // Complex Division c1.divide(c2) pub fn (c1 Complex) divide(c2 Complex) Complex { denom := (c2.re * c2.re) + (c2.im * c2.im) return Complex { ((c1.re * c2.re) + ((c1.im * -c2.im) * -1)) / denom, ((c1.re * -c2.im) + (c1.im * c2.re)) / denom } } // Complex Conjugate pub fn (c Complex) conjugate() Complex{ return Complex{c.re, -c.im} } // Complex Additive Inverse // Based on // http://tutorial.math.lamar.edu/Extras/ComplexPrimer/Arithmetic.aspx pub fn (c Complex) addinv() Complex { return Complex{-c.re, -c.im} } // Complex Multiplicative Inverse // Based on // http://tutorial.math.lamar.edu/Extras/ComplexPrimer/Arithmetic.aspx pub fn (c Complex) mulinv() Complex { return Complex { c.re / (c.re * c.re + c.im * c.im), -c.im / (c.re * c.re + c.im * c.im) } } // Complex Power // Based on // https://www.khanacademy.org/math/precalculus/imaginary-and-complex-numbers/multiplying-and-dividing-complex-numbers-in-polar-form/a/complex-number-polar-form-review pub fn (c Complex) pow(n f64) Complex { r := math.pow(c.abs(), n) angle := c.angle() return Complex { r * math.cos(n * angle), r * math.sin(n * angle) } } // Complex nth root pub fn (c Complex) root(n f64) Complex { return c.pow(1.0 / n) } // Complex Exponential // Using Euler's Identity // Based on // https://www.math.wisc.edu/~angenent/Free-Lecture-Notes/freecomplexnumbers.pdf pub fn (c Complex) exp() Complex { a := math.exp(c.re) return Complex { a * math.cos(c.im), a * math.sin(c.im) } } // Complex Natural Logarithm // Based on // http://www.chemistrylearning.com/logarithm-of-complex-number/ pub fn (c Complex) ln() Complex { return Complex { math.log(c.abs()), c.angle() } } // Complex Sin // Based on // http://www.milefoot.com/math/complex/functionsofi.htm pub fn (c Complex) sin() Complex { return Complex{ math.sin(c.re) * math.cosh(c.im), math.cos(c.re) * math.sinh(c.im) } } // Complex Cosine // Based on // http://www.milefoot.com/math/complex/functionsofi.htm pub fn (c Complex) cos() Complex { return Complex{ math.cos(c.re) * math.cosh(c.im), -(math.sin(c.re) * math.sinh(c.im)) } } // Complex Tangent // Based on // http://www.milefoot.com/math/complex/functionsofi.htm pub fn (c Complex) tan() Complex { return c.sin().divide(c.cos()) } // Complex Hyperbolic Sin // Based on // http://www.milefoot.com/math/complex/functionsofi.htm pub fn (c Complex) sinh() Complex { return Complex{ math.cos(c.im) * math.sinh(c.re), math.sin(c.im) * math.cosh(c.re) } } // Complex Hyperbolic Cosine // Based on // http://www.milefoot.com/math/complex/functionsofi.htm pub fn (c Complex) cosh() Complex { return Complex{ math.cos(c.im) * math.cosh(c.re), math.sin(c.im) * math.sinh(c.re) } } // Complex Hyperbolic Tangent // Based on // http://www.milefoot.com/math/complex/functionsofi.htm pub fn (c Complex) tanh() Complex { return c.sinh().divide(c.cosh()) } // Complex Equals pub fn (c1 Complex) equals(c2 Complex) bool { return (c1.re == c2.re) && (c1.im == c2.im) }