/********************************************************************** * * Sokol 3d cube multishader demo * * Copyright (c) 2021 Dario Deledda. All rights reserved. * Use of this source code is governed by an MIT license * that can be found in the LICENSE file. * * HOW TO COMPILE SHADERS: * Run `v shader .` in this directory to compile the shaders. * For more info and help with shader compilation see `docs.md` and `v help shader`. * * TODO: * - frame counter **********************************************************************/ import gg import gg.m4 import gx // import math import sokol.sapp import sokol.gfx import sokol.sgl import time // GLSL Include and functions #flag -I @VMODROOT/. #include "rt_glsl_march.h" # Should be generated with `v shader .` (see the instructions at the top of this file) #include "rt_glsl_puppy.h" # Should be generated with `v shader .` (see the instructions at the top of this file) fn C.rt_march_shader_desc(gfx.Backend) &gfx.ShaderDesc fn C.rt_puppy_shader_desc(gfx.Backend) &gfx.ShaderDesc const ( win_width = 800 win_height = 800 bg_color = gx.white ) struct App { mut: gg &gg.Context texture gfx.Image init_flag bool frame_count int mouse_x int = -1 mouse_y int = -1 mouse_down bool // glsl cube_pip_glsl gfx.Pipeline cube_bind gfx.Bindings pipe map[string]gfx.Pipeline bind map[string]gfx.Bindings // time ticks i64 } /****************************************************************************** * Texture functions ******************************************************************************/ fn create_texture(w int, h int, buf byteptr) gfx.Image { sz := w * h * 4 mut img_desc := gfx.ImageDesc{ width: w height: h num_mipmaps: 0 min_filter: .linear mag_filter: .linear // usage: .dynamic wrap_u: .clamp_to_edge wrap_v: .clamp_to_edge label: &byte(0) d3d11_texture: 0 } // comment if .dynamic is enabled img_desc.data.subimage[0][0] = gfx.Range{ ptr: buf size: usize(sz) } sg_img := gfx.make_image(&img_desc) return sg_img } fn destroy_texture(sg_img gfx.Image) { gfx.destroy_image(sg_img) } // Use only if usage: .dynamic is enabled fn update_text_texture(sg_img gfx.Image, w int, h int, buf byteptr) { sz := w * h * 4 mut tmp_sbc := gfx.ImageData{} tmp_sbc.subimage[0][0] = gfx.Range{ ptr: buf size: usize(sz) } gfx.update_image(sg_img, &tmp_sbc) } /****************************************************************************** * Draw functions ****************************************************************************** Cube vertex buffer with packed vertex formats for color and texture coords. Note that a vertex format which must be portable across all backends must only use the normalized integer formats (BYTE4N, UBYTE4N, SHORT2N, SHORT4N), which can be converted to floating point formats in the vertex shader inputs. The reason is that D3D11 cannot convert from non-normalized formats to floating point inputs (only to integer inputs), and WebGL2 / GLES2 don't support integer vertex shader inputs. */ struct Vertex_t { x f32 y f32 z f32 color u32 // u u16 // for compatibility with D3D11 // v u16 // for compatibility with D3D11 u f32 v f32 } // march shader init fn init_cube_glsl_m(mut app App) { // cube vertex buffer // d := u16(32767) // for compatibility with D3D11, 32767 stand for 1 d := f32(1.0) c := u32(0xFFFFFF_FF) // color RGBA8 vertices := [ // Face 0 Vertex_t{-1.0, -1.0, -1.0, c, 0, 0}, Vertex_t{ 1.0, -1.0, -1.0, c, d, 0}, Vertex_t{ 1.0, 1.0, -1.0, c, d, d}, Vertex_t{-1.0, 1.0, -1.0, c, 0, d}, // Face 1 Vertex_t{-1.0, -1.0, 1.0, c, 0, 0}, Vertex_t{ 1.0, -1.0, 1.0, c, d, 0}, Vertex_t{ 1.0, 1.0, 1.0, c, d, d}, Vertex_t{-1.0, 1.0, 1.0, c, 0, d}, // Face 2 Vertex_t{-1.0, -1.0, -1.0, c, 0, 0}, Vertex_t{-1.0, 1.0, -1.0, c, d, 0}, Vertex_t{-1.0, 1.0, 1.0, c, d, d}, Vertex_t{-1.0, -1.0, 1.0, c, 0, d}, // Face 3 Vertex_t{ 1.0, -1.0, -1.0, c, 0, 0}, Vertex_t{ 1.0, 1.0, -1.0, c, d, 0}, Vertex_t{ 1.0, 1.0, 1.0, c, d, d}, Vertex_t{ 1.0, -1.0, 1.0, c, 0, d}, // Face 4 Vertex_t{-1.0, -1.0, -1.0, c, 0, 0}, Vertex_t{-1.0, -1.0, 1.0, c, d, 0}, Vertex_t{ 1.0, -1.0, 1.0, c, d, d}, Vertex_t{ 1.0, -1.0, -1.0, c, 0, d}, // Face 5 Vertex_t{-1.0, 1.0, -1.0, c, 0, 0}, Vertex_t{-1.0, 1.0, 1.0, c, d, 0}, Vertex_t{ 1.0, 1.0, 1.0, c, d, d}, Vertex_t{ 1.0, 1.0, -1.0, c, 0, d}, ] mut vert_buffer_desc := gfx.BufferDesc{label: c'cube-vertices'} unsafe { C.memset(&vert_buffer_desc, 0, sizeof(vert_buffer_desc)) } vert_buffer_desc.size = usize(vertices.len * int(sizeof(Vertex_t))) vert_buffer_desc.data = gfx.Range{ ptr: vertices.data size: usize(vertices.len * int(sizeof(Vertex_t))) } vert_buffer_desc.@type = .vertexbuffer vbuf := gfx.make_buffer(&vert_buffer_desc) /* create an index buffer for the cube */ indices := [ u16(0), 1, 2, 0, 2, 3, 6, 5, 4, 7, 6, 4, 8, 9, 10, 8, 10, 11, /* u16(14), 13, 12, 15, 14, 12, 16, 17, 18, 16, 18, 19, 22, 21, 20, 23, 22, 20 */ ] mut index_buffer_desc := gfx.BufferDesc{label: c'cube-indices'} unsafe { C.memset(&index_buffer_desc, 0, sizeof(index_buffer_desc)) } index_buffer_desc.size = usize(indices.len * int(sizeof(u16))) index_buffer_desc.data = gfx.Range{ ptr: indices.data size: usize(indices.len * int(sizeof(u16))) } index_buffer_desc.@type = .indexbuffer ibuf := gfx.make_buffer(&index_buffer_desc) // create shader shader := gfx.make_shader(C.rt_march_shader_desc(C.sg_query_backend())) mut pipdesc := gfx.PipelineDesc{} unsafe { C.memset(&pipdesc, 0, sizeof(pipdesc)) } pipdesc.layout.buffers[0].stride = int(sizeof(Vertex_t)) // the constants [C.ATTR_vs_m_pos, C.ATTR_vs_m_color0, C.ATTR_vs_m_texcoord0] are generated by sokol-shdc pipdesc.layout.attrs[C.ATTR_vs_m_pos ].format = .float3 // x,y,z as f32 pipdesc.layout.attrs[C.ATTR_vs_m_color0 ].format = .ubyte4n // color as u32 pipdesc.layout.attrs[C.ATTR_vs_m_texcoord0].format = .float2 // u,v as f32 // pipdesc.layout.attrs[C.ATTR_vs_m_texcoord0].format = .short2n // u,v as u16 pipdesc.shader = shader pipdesc.index_type = .uint16 pipdesc.depth = gfx.DepthState{ write_enabled: true compare: .less_equal } pipdesc.cull_mode = .back pipdesc.label = 'glsl_shader pipeline'.str mut bind := gfx.Bindings{} unsafe { C.memset(&bind, 0, sizeof(bind)) } bind.vertex_buffers[0] = vbuf bind.index_buffer = ibuf bind.fs_images[C.SLOT_tex] = app.texture app.bind['march'] = bind app.pipe['march'] = gfx.make_pipeline(&pipdesc) println('GLSL March init DONE!') } // putty shader init fn init_cube_glsl_p(mut app App) { // cube vertex buffer // d := u16(32767) // for compatibility with D3D11, 32767 stand for 1 d := f32(1.0) c := u32(0xFFFFFF_FF) // color RGBA8 vertices := [ // Face 0 Vertex_t{-1.0, -1.0, -1.0, c, 0, 0}, Vertex_t{ 1.0, -1.0, -1.0, c, d, 0}, Vertex_t{ 1.0, 1.0, -1.0, c, d, d}, Vertex_t{-1.0, 1.0, -1.0, c, 0, d}, // Face 1 Vertex_t{-1.0, -1.0, 1.0, c, 0, 0}, Vertex_t{ 1.0, -1.0, 1.0, c, d, 0}, Vertex_t{ 1.0, 1.0, 1.0, c, d, d}, Vertex_t{-1.0, 1.0, 1.0, c, 0, d}, // Face 2 Vertex_t{-1.0, -1.0, -1.0, c, 0, 0}, Vertex_t{-1.0, 1.0, -1.0, c, d, 0}, Vertex_t{-1.0, 1.0, 1.0, c, d, d}, Vertex_t{-1.0, -1.0, 1.0, c, 0, d}, // Face 3 Vertex_t{ 1.0, -1.0, -1.0, c, 0, 0}, Vertex_t{ 1.0, 1.0, -1.0, c, d, 0}, Vertex_t{ 1.0, 1.0, 1.0, c, d, d}, Vertex_t{ 1.0, -1.0, 1.0, c, 0, d}, // Face 4 Vertex_t{-1.0, -1.0, -1.0, c, 0, 0}, Vertex_t{-1.0, -1.0, 1.0, c, d, 0}, Vertex_t{ 1.0, -1.0, 1.0, c, d, d}, Vertex_t{ 1.0, -1.0, -1.0, c, 0, d}, // Face 5 Vertex_t{-1.0, 1.0, -1.0, c, 0, 0}, Vertex_t{-1.0, 1.0, 1.0, c, d, 0}, Vertex_t{ 1.0, 1.0, 1.0, c, d, d}, Vertex_t{ 1.0, 1.0, -1.0, c, 0, d}, ] mut vert_buffer_desc := gfx.BufferDesc{label: c'cube-vertices'} unsafe { C.memset(&vert_buffer_desc, 0, sizeof(vert_buffer_desc)) } vert_buffer_desc.size = usize(vertices.len * int(sizeof(Vertex_t))) vert_buffer_desc.data = gfx.Range{ ptr: vertices.data size: usize(vertices.len * int(sizeof(Vertex_t))) } vert_buffer_desc.@type = .vertexbuffer vbuf := gfx.make_buffer(&vert_buffer_desc) /* create an index buffer for the cube */ indices := [ /* u16(0), 1, 2, 0, 2, 3, 6, 5, 4, 7, 6, 4, 8, 9, 10, 8, 10, 11, */ u16(14), 13, 12, 15, 14, 12, 16, 17, 18, 16, 18, 19, 22, 21, 20, 23, 22, 20 ] mut index_buffer_desc := gfx.BufferDesc{label: c'cube-indices'} unsafe { C.memset(&index_buffer_desc, 0, sizeof(index_buffer_desc)) } index_buffer_desc.size = usize(indices.len * int(sizeof(u16))) index_buffer_desc.data = gfx.Range{ ptr: indices.data size: usize(indices.len * int(sizeof(u16))) } index_buffer_desc.@type = .indexbuffer ibuf := gfx.make_buffer(&index_buffer_desc) // create shader shader := gfx.make_shader(C.rt_puppy_shader_desc(C.sg_query_backend())) mut pipdesc := gfx.PipelineDesc{} unsafe { C.memset(&pipdesc, 0, sizeof(pipdesc)) } pipdesc.layout.buffers[0].stride = int(sizeof(Vertex_t)) // the constants [C.ATTR_vs_p_pos, C.ATTR_vs_p_color0, C.ATTR_vs_p_texcoord0] are generated by sokol-shdc pipdesc.layout.attrs[C.ATTR_vs_p_pos ].format = .float3 // x,y,z as f32 pipdesc.layout.attrs[C.ATTR_vs_p_color0 ].format = .ubyte4n // color as u32 pipdesc.layout.attrs[C.ATTR_vs_p_texcoord0].format = .float2 // u,v as f32 // pipdesc.layout.attrs[C.ATTR_vs_p_texcoord0].format = .short2n // u,v as u16 pipdesc.shader = shader pipdesc.index_type = .uint16 pipdesc.depth = gfx.DepthState{ write_enabled: true compare: .less_equal } pipdesc.cull_mode = .back pipdesc.label = 'glsl_shader pipeline'.str mut bind := gfx.Bindings{} unsafe { C.memset(&bind, 0, sizeof(bind)) } bind.vertex_buffers[0] = vbuf bind.index_buffer = ibuf bind.fs_images[C.SLOT_tex] = app.texture app.bind['puppy'] = bind app.pipe['puppy'] = gfx.make_pipeline(&pipdesc) println('GLSL Puppy init DONE!') } [inline] fn vec4(x f32, y f32, z f32, w f32) m4.Vec4 { return m4.Vec4{e:[x, y, z, w]!} } fn calc_tr_matrices(w f32, h f32, rx f32, ry f32, in_scale f32) m4.Mat4 { proj := m4.perspective(60, w/h, 0.01, 10.0) view := m4.look_at(vec4(f32(0.0) ,0 , 6, 0), vec4(f32(0), 0, 0, 0), vec4(f32(0), 1, 0, 0)) view_proj := view * proj rxm := m4.rotate(m4.rad(rx), vec4(f32(1), 0, 0, 0)) rym := m4.rotate(m4.rad(ry), vec4(f32(0), 1, 0, 0)) model := rym * rxm scale_m := m4.scale(vec4(in_scale, in_scale, in_scale, 1)) res := (scale_m * model) * view_proj return res } // march triangles draw fn draw_cube_glsl_m(app App) { if app.init_flag == false { return } ws := gg.window_size_real_pixels() ratio := f32(ws.width) / ws.height dw := f32(ws.width / 2) dh := f32(ws.height / 2) rot := [f32(app.mouse_y), f32(app.mouse_x)] tr_matrix := calc_tr_matrices(dw, dh, rot[0], rot[1], 2.3) gfx.apply_pipeline(app.pipe['march']) gfx.apply_bindings(app.bind['march']) // Uniforms // *** vertex shadeer uniforms *** // passing the view matrix as uniform // res is a 4x4 matrix of f32 thus: 4*16 byte of size vs_uniforms_range := gfx.Range{ ptr: &tr_matrix size: usize(4 * 16) } gfx.apply_uniforms(.vs, C.SLOT_vs_params_m, &vs_uniforms_range) // *** fragment shader uniforms *** time_ticks := f32(time.ticks() - app.ticks) / 1000 mut tmp_fs_params := [ f32(ws.width), ws.height * ratio, // x,y resolution to pass to FS 0, 0, // dont send mouse position /* app.mouse_x, // mouse x */ /* ws.height - app.mouse_y*2, // mouse y scaled */ time_ticks, // time as f32 app.frame_count, // frame count 0, 0 // padding bytes , see "fs_params" struct paddings in rt_glsl.h ]! fs_uniforms_range := gfx.Range{ ptr: unsafe { &tmp_fs_params } size: usize(sizeof(tmp_fs_params)) } gfx.apply_uniforms(.fs, C.SLOT_fs_params_p, &fs_uniforms_range) // 3 vertices for triangle * 2 triangles per face * 6 faces = 36 vertices to draw gfx.draw(0, (3 * 2) * 3, 1) } // puppy triangles draw fn draw_cube_glsl_p(app App) { if app.init_flag == false { return } ws := gg.window_size_real_pixels() ratio := f32(ws.width) / ws.height dw := f32(ws.width / 2) dh := f32(ws.height / 2) rot := [f32(app.mouse_y), f32(app.mouse_x)] tr_matrix := calc_tr_matrices(dw, dh, rot[0], rot[1], 2.3) // apply the pipline and bindings gfx.apply_pipeline(app.pipe['puppy']) gfx.apply_bindings(app.bind['puppy']) // Uniforms // *** vertex shadeer uniforms *** // passing the view matrix as uniform // res is a 4x4 matrix of f32 thus: 4*16 byte of size vs_uniforms_range := gfx.Range{ ptr: &tr_matrix size: usize(4 * 16) } gfx.apply_uniforms(.vs, C.SLOT_vs_params_p, &vs_uniforms_range) // *** fragment shader uniforms *** time_ticks := f32(time.ticks() - app.ticks) / 1000 mut tmp_fs_params := [ f32(ws.width), ws.height * ratio, // x,y resolution to pass to FS 0, 0, // dont send mouse position /* app.mouse_x, // mouse x */ /* ws.height - app.mouse_y*2, // mouse y scaled */ time_ticks, // time as f32 app.frame_count, // frame count 0, 0 // padding bytes , see "fs_params" struct paddings in rt_glsl.h ]! fs_uniforms_range := gfx.Range{ ptr: unsafe { &tmp_fs_params } size: usize(sizeof(tmp_fs_params)) } gfx.apply_uniforms(.fs, C.SLOT_fs_params_p, &fs_uniforms_range) // 3 vertices for triangle * 2 triangles per face * 6 faces = 36 vertices to draw gfx.draw(0, (3 * 2) * 3, 1) } fn draw_start_glsl(app App) { if app.init_flag == false { return } ws := gg.window_size_real_pixels() // ratio := f32(ws.width) / ws.height // dw := f32(ws.width / 2) // dh := f32(ws.height / 2) gfx.apply_viewport(0, 0, ws.width, ws.height, true) } fn draw_end_glsl(app App) { gfx.end_pass() gfx.commit() } fn frame(mut app App) { ws := gg.window_size_real_pixels() // clear mut color_action := gfx.ColorAttachmentAction{ action: .clear value: gfx.Color{ r: 0.0 g: 0.0 b: 0.0 a: 1.0 } } mut pass_action := gfx.PassAction{} pass_action.colors[0] = color_action gfx.begin_default_pass(&pass_action, ws.width, ws.height) /* // glsl cube if app.frame_count % 1 == 1{ draw_cube_glsl_m(app) } else { draw_cube_glsl_p(app) } */ draw_start_glsl(app) draw_cube_glsl_m(app) draw_cube_glsl_p(app) draw_end_glsl(app) app.frame_count++ } /****************************************************************************** * Init / Cleanup ******************************************************************************/ fn my_init(mut app App) { // set max vertices, // for a large number of the same type of object it is better use the instances!! desc := sapp.create_desc() gfx.setup(&desc) sgl_desc := sgl.Desc{ max_vertices: 50 * 65536 } sgl.setup(&sgl_desc) // create chessboard texture 256*256 RGBA w := 256 h := 256 sz := w * h * 4 tmp_txt := unsafe { malloc(sz) } mut i := 0 for i < sz { unsafe { y := (i >> 0x8) >> 5 // 8 cell x := (i & 0xFF) >> 5 // 8 cell // upper left corner if x == 0 && y == 0 { tmp_txt[i + 0] = byte(0xFF) tmp_txt[i + 1] = byte(0) tmp_txt[i + 2] = byte(0) tmp_txt[i + 3] = byte(0xFF) } // low right corner else if x == 7 && y == 7 { tmp_txt[i + 0] = byte(0) tmp_txt[i + 1] = byte(0xFF) tmp_txt[i + 2] = byte(0) tmp_txt[i + 3] = byte(0xFF) } else { col := if ((x + y) & 1) == 1 { 0xFF } else { 128 } tmp_txt[i + 0] = byte(col) // red tmp_txt[i + 1] = byte(col) // green tmp_txt[i + 2] = byte(col) // blue tmp_txt[i + 3] = byte(0xFF) // alpha } i += 4 } } app.texture = create_texture(w, h, tmp_txt) unsafe { free(tmp_txt) } // glsl init_cube_glsl_m(mut app) init_cube_glsl_p(mut app) app.init_flag = true } fn cleanup(mut app App) { gfx.shutdown() } /****************************************************************************** * events handling ******************************************************************************/ fn my_event_manager(mut ev gg.Event, mut app App) { if ev.typ == .mouse_down { app.mouse_down = true } if ev.typ == .mouse_up { app.mouse_down = false } if app.mouse_down == true && ev.typ == .mouse_move { app.mouse_x = int(ev.mouse_x) app.mouse_y = int(ev.mouse_y) } if ev.typ == .touches_began || ev.typ == .touches_moved { if ev.num_touches > 0 { touch_point := ev.touches[0] app.mouse_x = int(touch_point.pos_x) app.mouse_y = int(touch_point.pos_y) } } } /****************************************************************************** * Main ******************************************************************************/ [console] // is needed for easier diagnostics on windows fn main() { // App init mut app := &App{ gg: 0 } app.gg = gg.new_context( width: win_width height: win_height create_window: true window_title: '3D Dual shader Cube - click and rotate with the mouse' user_data: app bg_color: bg_color frame_fn: frame init_fn: my_init cleanup_fn: cleanup event_fn: my_event_manager ) app.ticks = time.ticks() app.gg.run() }