// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module rand // Ported from http://www.pcg-random.org/download.html, // https://github.com/imneme/pcg-c-basic/blob/master/pcg_basic.c, and // https://github.com/imneme/pcg-c-basic/blob/master/pcg_basic.h pub struct PCG32RNG { mut: state u64 = u64(0x853c49e6748fea9b) ^ time_seed_64() inc u64 = u64(0xda3e39cb94b95bdb) ^ time_seed_64() } // TODO: Remove in Phase 2 of reorganizing Random pub fn new_pcg32(init_state, init_seq u64) PCG32RNG { mut rng := PCG32RNG{} rng.seed([u32(init_state), u32(init_state >> 32), u32(init_seq), u32(init_seq >> 32)]) return rng } pub fn (mut rng PCG32RNG) bounded_next(bound u32) u32 { return rng.u32n(bound) } // rng.seed(seed_data) - seed the PCG32RNG with 4 u32 values. // The first 2 represent the 64-bit initial state as [lower 32 bits, higher 32 bits] // The last 2 represent the 64-bit stream/step of the PRNG. pub fn (mut rng PCG32RNG) seed(seed_data []u32) { if seed_data.len != 4 { eprintln('PCG32RNG needs 4 u32s to be seeded. First two the initial state and the last two the stream/step. Both in little endian format: [lower, higher]') exit(1) } init_state := u64(seed_data[0]) | (u64(seed_data[1]) << 32) init_seq := u64(seed_data[2]) | (u64(seed_data[3]) << 32) rng.state = u64(0) rng.inc = (init_seq << u64(1)) | u64(1) rng.u32() rng.state += init_state rng.u32() } // rng.u32() - return a pseudorandom 32 bit unsigned u32 [inline] pub fn (mut rng PCG32RNG) u32() u32 { oldstate := rng.state rng.state = oldstate * (6364136223846793005) + rng.inc xorshifted := u32(((oldstate >> u64(18)) ^ oldstate) >> u64(27)) rot := u32(oldstate >> u64(59)) return ((xorshifted >> rot) | (xorshifted << ((-rot) & u32(31)))) } // rng.u64() - return a pseudorandom 64 bit unsigned u64 [inline] pub fn (mut rng PCG32RNG) u64() u64 { return u64(rng.u32()) | (u64(rng.u32()) << 32) } // rn.u32n(max) - return a pseudorandom 32 bit unsigned u32 in [0, max) [inline] pub fn (mut rng PCG32RNG) u32n(max u32) u32 { if max == 0 { eprintln('max must be positive') exit(1) } // To avoid bias, we need to make the range of the RNG a multiple of // max, which we do by dropping output less than a threshold. threshold := (-max % max) // Uniformity guarantees that loop below will terminate. In practice, it // should usually terminate quickly; on average (assuming all max's are // equally likely), 82.25% of the time, we can expect it to require just // one iteration. In practice, max's are typically small and only a // tiny amount of the range is eliminated. for { r := rng.u32() if r >= threshold { return (r % max) } } return u32(0) } // rn.u64n(max) - return a pseudorandom 64 bit unsigned u64 in [0, max) [inline] pub fn (mut rng PCG32RNG) u64n(max u64) u64 { if max == 0 { eprintln('max must be positive') exit(1) } threshold := (-max % max) for { r := rng.u64() if r >= threshold { return (r % max) } } return u64(0) } // rn.u32_in_range(min, max) - return a pseudorandom 32 bit unsigned u32 in [min, max) [inline] pub fn (mut rng PCG32RNG) u32_in_range(min, max u64) u64 { if max <= min { eprintln('max must be greater than min') exit(1) } return min + rng.u32n(u32(max - min)) } // rn.u64_in_range(min, max) - return a pseudorandom 64 bit unsigned u64 in [min, max) [inline] pub fn (mut rng PCG32RNG) u64_in_range(min, max u64) u64 { if max <= min { eprintln('max must be greater than min') exit(1) } return min + rng.u64n(max - min) } // rng.int() - return a 32-bit signed (possibly negative) int [inline] pub fn (mut rng PCG32RNG) int() int { return int(rng.u32()) } // rng.i64() - return a 64-bit signed (possibly negative) i64 [inline] pub fn (mut rng PCG32RNG) i64() i64 { return i64(rng.u64()) } // rng.int31() - return a 31bit positive pseudorandom integer [inline] pub fn (mut rng PCG32RNG) int31() int { return int(rng.u32() >> 1) } // rng.int63() - return a 63bit positive pseudorandom integer [inline] pub fn (mut rng PCG32RNG) int63() i64 { return i64(rng.u64() >> 1) } // rng.intn(max) - return a 32bit positive int in [0, max) [inline] pub fn (mut rng PCG32RNG) intn(max int) int { if max <= 0 { eprintln('max has to be positive.') exit(1) } return int(rng.u32n(u32(max))) } // rng.i64n(max) - return a 64bit positive i64 in [0, max) [inline] pub fn (mut rng PCG32RNG) i64n(max i64) i64 { if max <= 0 { eprintln('max has to be positive.') exit(1) } return i64(rng.u64n(u64(max))) } // rng.int_in_range(min, max) - return a 32bit positive int in [0, max) [inline] pub fn (mut rng PCG32RNG) int_in_range(min, max int) int { if max <= min { eprintln('max must be greater than min.') exit(1) } return min + rng.intn(max - min) } // rng.i64_in_range(min, max) - return a 64bit positive i64 in [0, max) [inline] pub fn (mut rng PCG32RNG) i64_in_range(min, max i64) i64 { if max <= min { eprintln('max must be greater than min.') exit(1) } return min + rng.i64n(max - min) } // rng.f32() returns a pseudorandom f32 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1) [inline] pub fn (mut rng PCG32RNG) f32() f32 { return f32(rng.u32()) / max_u32_as_f32 } // rng.f64() returns a pseudorandom f64 value between 0.0 (inclusive) and 1.0 (exclusive) i.e [0, 1) [inline] pub fn (mut rng PCG32RNG) f64() f64 { return f64(rng.u64()) / max_u64_as_f64 } // rng.f32n() returns a pseudorandom f32 value in [0, max) [inline] pub fn (mut rng PCG32RNG) f32n(max f32) f32 { if max <= 0 { eprintln('max has to be positive.') exit(1) } return rng.f32() * max } // rng.f64n() returns a pseudorandom f64 value in [0, max) [inline] pub fn (mut rng PCG32RNG) f64n(max f64) f64 { if max <= 0 { eprintln('max has to be positive.') exit(1) } return rng.f64() * max } // rng.f32_in_range(min, max) returns a pseudorandom f32 that lies in [min, max) [inline] pub fn (mut rng PCG32RNG) f32_in_range(min, max f32) f32 { if max <= min { eprintln('max must be greater than min') exit(1) } return min + rng.f32n(max - min) } // rng.i64_in_range(min, max) returns a pseudorandom i64 that lies in [min, max) [inline] pub fn (mut rng PCG32RNG) f64_in_range(min, max f64) f64 { if max <= min { eprintln('max must be greater than min') exit(1) } return min + rng.f64n(max - min) }