module os // ProcessState.not_started - the process has not yet started // ProcessState.running - the process is currently running // ProcessState.stopped - the process was running, but was stopped temporarily // ProcessState.exited - the process has finished/exited // ProcessState.aborted - the process was terminated by a signal pub enum ProcessState { not_started running stopped exited aborted } [ref_only] pub struct Process { pub: filename string // the process's command file path pub mut: pid int // the PID of the process code int = -1 // the exit code of the process, != -1 *only* when status is .exited *and* the process was not aborted status ProcessState = .not_started // the current status of the process err string // if the process fails, contains the reason why args []string // the arguments that the command takes env_is_custom bool // true, when the environment was customized with .set_environment env []string // the environment with which the process was started use_stdio_ctl bool // when true, then you can use p.stdin_write(), p.stdout_slurp() and p.stderr_slurp() stdio_fd [3]int } // new_process - create a new process descriptor // NB: new does NOT start the new process. // That is done because you may want to customize it first, // by calling different set_ methods on it. // In order to start it, call p.run() or p.wait() pub fn new_process(filename string) &Process { return &Process{ filename: filename } } // set_args - set the arguments for the new process pub fn (mut p Process) set_args(pargs []string) &Process { if p.status != .not_started { return p } p.args = pargs return p } // set_environment - set a custom environment variable mapping for the new process pub fn (mut p Process) set_environment(envs map[string]string) &Process { if p.status != .not_started { return p } p.env_is_custom = true p.env = []string{} for k, v in envs { p.env << '$k=$v' } return p } // run - starts the new process pub fn (mut p Process) run() &Process { if p.status != .not_started { return p } p._spawn() return p } // signal_kill - kills the process, after that it is no longer running pub fn (mut p Process) signal_kill() &Process { if p.status !in [.running, .stopped] { return p } p._signal_kill() p.status = .aborted return p } // signal_stop - stops the process, you can resume it with p.signal_continue() pub fn (mut p Process) signal_stop() &Process { if p.status != .running { return p } p._signal_stop() p.status = .stopped return p } // signal_continue - tell a stopped process to continue/resume its work pub fn (mut p Process) signal_continue() &Process { if p.status != .stopped { return p } p._signal_continue() p.status = .running return p } // wait - wait for a process to finish. // NB: You have to call p.wait(), otherwise a finished process // would get to a zombie state, and its resources will not get // released fully, until its parent process exits. // NB: This call will block the calling process until the child // process is finished. pub fn (mut p Process) wait() &Process { if p.status == .not_started { p._spawn() } if p.status !in [.running, .stopped] { return p } p._wait() return p } // // _spawn - should not be called directly, but only by p.run()/p.wait() . // It encapsulates the fork/execve mechanism that allows the // asynchronous starting of the new child process. fn (mut p Process) _spawn() int { if !p.env_is_custom { p.env = []string{} current_environment := environ() for k, v in current_environment { p.env << '$k=$v' } } mut pid := 0 $if windows { pid = p.win_spawn_process() } $else { pid = p.unix_spawn_process() } p.pid = pid p.status = .running return 0 } // is_alive - query whether the process p.pid is still alive pub fn (mut p Process) is_alive() bool { if p.status in [.running, .stopped] { return p._is_alive() } return false } // pub fn (mut p Process) set_redirect_stdio() &Process { p.use_stdio_ctl = true return p } pub fn (mut p Process) stdin_write(s string) { p._check_redirection_call('stdin_write') fd_write(p.stdio_fd[0], s) } pub fn (mut p Process) stdout_slurp() string { p._check_redirection_call('stdout_slurp') return fd_slurp(p.stdio_fd[1]).join('') } pub fn (mut p Process) stderr_slurp() string { p._check_redirection_call('stderr_slurp') return fd_slurp(p.stdio_fd[2]).join('') } pub fn (mut p Process) stdout_read() string { p._check_redirection_call('stdout_read') s, _ := fd_read(p.stdio_fd[1], 4096) return s } pub fn (mut p Process) stderr_read() string { p._check_redirection_call('stderr_read') s, _ := fd_read(p.stdio_fd[2], 4096) return s } // _check_redirection_call - should be called just by stdxxx methods fn (mut p Process) _check_redirection_call(fn_name string) { if !p.use_stdio_ctl { panic('Call p.set_redirect_stdio() before calling p.$fn_name') } if p.status == .not_started { panic('Call p.${fn_name}() after you have called p.run()') } } // _signal_stop - should not be called directly, except by p.signal_stop fn (mut p Process) _signal_stop() { $if windows { p.win_stop_process() } $else { p.unix_stop_process() } } // _signal_continue - should not be called directly, just by p.signal_continue fn (mut p Process) _signal_continue() { $if windows { p.win_resume_process() } $else { p.unix_resume_process() } } // _signal_kill - should not be called directly, except by p.signal_kill fn (mut p Process) _signal_kill() { $if windows { p.win_kill_process() } $else { p.unix_kill_process() } } // _wait - should not be called directly, except by p.wait() fn (mut p Process) _wait() { $if windows { p.win_wait() } $else { p.unix_wait() } } // _is_alive - should not be called directly, except by p.is_alive() fn (mut p Process) _is_alive() bool { $if windows { return p.win_is_alive() } $else { return p.unix_is_alive() } }