// Copyright (c) 2019-2020 Alexander Medvednikov. All rights reserved. // Use of this source code is governed by an MIT license // that can be found in the LICENSE file. module checker import v.ast import v.depgraph import v.table import v.token import v.pref import v.util import v.errors import os const ( max_nr_errors = 300 ) pub struct Checker { table &table.Table mut: file ast.File nr_errors int nr_warnings int errors []errors.Error warnings []errors.Warning error_lines []int // to avoid printing multiple errors for the same line expected_type table.Type fn_return_type table.Type // current function's return type const_decl string const_deps []string pref &pref.Preferences // Preferences shared from V struct in_for_count int // if checker is currently in an for loop // checked_ident string // to avoid infinit checker loops var_decl_name string returns bool scope_returns bool mod string // current module name is_builtin_mod bool // are we in `builtin`? } pub fn new_checker(table &table.Table, pref &pref.Preferences) Checker { return Checker{ table: table pref: pref } } pub fn (mut c Checker) check(ast_file ast.File) { c.file = ast_file for stmt in ast_file.stmts { c.stmt(stmt) } } pub fn (mut c Checker) check2(ast_file ast.File) []errors.Error { c.file = ast_file for stmt in ast_file.stmts { c.stmt(stmt) } return c.errors } pub fn (mut c Checker) check_files(ast_files []ast.File) { mut has_main_mod_file := false mut has_main_fn := false for file in ast_files { c.check(file) if file.mod.name == 'main' { has_main_mod_file = true if c.check_file_in_main(file) { has_main_fn = true } } } // Make sure fn main is defined in non lib builds if c.pref.build_mode == .build_module || c.pref.is_test { return } if c.pref.is_shared { // shared libs do not need to have a main return } if has_main_mod_file && !has_main_fn { c.error('function `main` must be declared in the main module', token.Position{}) } } const ( no_pub_in_main_warning = 'in module main cannot be declared public' ) // do checks specific to files in main module // returns `true` if a main function is in the file fn (mut c Checker) check_file_in_main(file ast.File) bool { mut has_main_fn := false for stmt in file.stmts { match stmt { ast.ConstDecl { if it.is_pub { c.warn('const $no_pub_in_main_warning', it.pos) } } ast.ConstField { if it.is_pub { c.warn('const field `$it.name` $no_pub_in_main_warning', it.pos) } } ast.EnumDecl { if it.is_pub { c.warn('enum `$it.name` $no_pub_in_main_warning', it.pos) } } ast.FnDecl { if it.name == 'main' { has_main_fn = true if it.is_pub { c.error('function `main` cannot be declared public', it.pos) } if it.args.len > 0 { c.error('function `main` cannot have arguments', it.pos) } if it.return_type != table.void_type { c.error('function `main` cannot return values', it.pos) } } else { if it.is_pub { c.warn('function `$it.name` $no_pub_in_main_warning', it.pos) } } if it.ctdefine.len > 0 { if it.return_type != table.void_type { c.error('only functions that do NOT return values can have `[if ${it.ctdefine}]` tags', it.pos) } } } ast.StructDecl { if it.is_pub { c.warn('struct `$it.name` $no_pub_in_main_warning', it.pos) } } ast.TypeDecl { type_decl := stmt as ast.TypeDecl if type_decl is ast.AliasTypeDecl { alias_decl := type_decl as ast.AliasTypeDecl if alias_decl.is_pub { c.warn('type alias `$alias_decl.name` $no_pub_in_main_warning', alias_decl.pos) } } else if type_decl is ast.SumTypeDecl { sum_decl := type_decl as ast.SumTypeDecl if sum_decl.is_pub { c.warn('sum type `$sum_decl.name` $no_pub_in_main_warning', sum_decl.pos) } } else if type_decl is ast.FnTypeDecl { fn_decl := type_decl as ast.FnTypeDecl if fn_decl.is_pub { c.warn('type alias `$fn_decl.name` $no_pub_in_main_warning', fn_decl.pos) } } } else {} } } return has_main_fn } pub fn (mut c Checker) type_decl(node ast.TypeDecl) { match node { ast.AliasTypeDecl { typ_sym := c.table.get_type_symbol(it.parent_type) if typ_sym.kind == .placeholder { c.error("type `$typ_sym.name` doesn't exist", it.pos) } } ast.FnTypeDecl { typ_sym := c.table.get_type_symbol(it.typ) fn_typ_info := typ_sym.info as table.FnType fn_info := fn_typ_info.func ret_sym := c.table.get_type_symbol(fn_info.return_type) if ret_sym.kind == .placeholder { c.error("type `$ret_sym.name` doesn't exist", it.pos) } for arg in fn_info.args { arg_sym := c.table.get_type_symbol(arg.typ) if arg_sym.kind == .placeholder { c.error("type `$arg_sym.name` doesn't exist", it.pos) } } } ast.SumTypeDecl { for typ in it.sub_types { typ_sym := c.table.get_type_symbol(typ) if typ_sym.kind == .placeholder { c.error("type `$typ_sym.name` doesn't exist", it.pos) } } } } } pub fn (mut c Checker) struct_decl(decl ast.StructDecl) { splitted_full_name := decl.name.split('.') is_builtin := splitted_full_name[0] == 'builtin' name := splitted_full_name.last() if !name[0].is_capital() && !decl.is_c && !is_builtin && name !in table.builtin_type_names { pos := token.Position{ line_nr: decl.pos.line_nr pos: decl.pos.pos + 7 len: name.len } c.error('struct name must begin with capital letter', pos) } for i, field in decl.fields { for j in 0 .. i { if field.name == decl.fields[j].name { c.error('field name `$field.name` duplicate', field.pos) } } sym := c.table.get_type_symbol(field.typ) if sym.kind == .placeholder && !decl.is_c && !sym.name.starts_with('C.') { c.error('unknown type `$sym.name`', field.pos) } if field.has_default_expr { c.expected_type = field.typ field_expr_type := c.expr(field.default_expr) if !c.table.check(field_expr_type, field.typ) { field_expr_type_sym := c.table.get_type_symbol(field_expr_type) field_type_sym := c.table.get_type_symbol(field.typ) field_name := field.name fet_name := field_expr_type_sym.name ft_name := field_type_sym.name c.error('default expression for field `${field_name}` ' + 'has type `${fet_name}`, but should be `${ft_name}`', field.default_expr.position()) } } } // && (p.tok.lit[0].is_capital() || is_c || (p.builtin_mod && Sp.tok.lit in table.builtin_type_names)) } pub fn (mut c Checker) struct_init(struct_init mut ast.StructInit) table.Type { // typ := c.table.find_type(struct_init.typ.typ.name) or { // c.error('unknown struct: $struct_init.typ.typ.name', struct_init.pos) // panic('') // } if struct_init.typ == table.void_type { // Short syntax `({foo: bar})` if c.expected_type == table.void_type { c.error('unexpected short struct syntax', struct_init.pos) return table.void_type } struct_init.typ = c.expected_type } type_sym := c.table.get_type_symbol(struct_init.typ) // println('check struct $typ_sym.name') match type_sym.kind { .placeholder { c.error('unknown struct: $type_sym.name', struct_init.pos) } // string & array are also structs but .kind of string/array .struct_, .string, .array { info := type_sym.info as table.Struct if struct_init.is_short && struct_init.fields.len > info.fields.len { c.error('too many fields', struct_init.pos) } mut inited_fields := []string{} for i, field in struct_init.fields { mut info_field := table.Field{} mut field_name := '' if struct_init.is_short { if i >= info.fields.len { // It doesn't make sense to check for fields that don't exist. // We should just stop here. break } info_field = info.fields[i] field_name = info_field.name struct_init.fields[i].name = field_name } else { field_name = field.name mut exists := false for f in info.fields { if f.name == field_name { info_field = f exists = true break } } if !exists { c.error('unknown field `$field.name` in struct literal of type `$type_sym.name`', field.pos) continue } if field_name in inited_fields { c.error('duplicate field name in struct literal: `$field_name`', field.pos) continue } } inited_fields << field_name c.expected_type = info_field.typ expr_type := c.expr(field.expr) expr_type_sym := c.table.get_type_symbol(expr_type) field_type_sym := c.table.get_type_symbol(info_field.typ) if !c.table.check(expr_type, info_field.typ) { c.error('cannot assign `$expr_type_sym.name` as `$field_type_sym.name` for field `$info_field.name`', field.pos) } struct_init.fields[i].typ = expr_type struct_init.fields[i].expected_type = info_field.typ } // Check uninitialized refs for field in info.fields { if field.name in inited_fields { continue } if field.typ.is_ptr() { c.warn('reference field `${type_sym.name}.${field.name}` must be initialized', struct_init.pos) } } } else {} } return struct_init.typ } pub fn (mut c Checker) infix_expr(infix_expr mut ast.InfixExpr) table.Type { // println('checker: infix expr(op $infix_expr.op.str())') c.expected_type = table.void_type left_type := c.expr(infix_expr.left) infix_expr.left_type = left_type c.expected_type = left_type right_type := c.expr(infix_expr.right) infix_expr.right_type = right_type right := c.table.get_type_symbol(right_type) left := c.table.get_type_symbol(left_type) // Single side check // Place these branches according to ops' usage frequency to accelerate. // TODO: First branch includes ops where single side check is not needed, or needed but hasn't been implemented. // TODO: Some of the checks are not single side. Should find a better way to organize them. match infix_expr.op { .eq, .ne, .gt, .lt, .ge, .le, .and, .logical_or, .dot, .key_as, .right_shift {} .key_in, .not_in { match right.kind { .array { right_sym := c.table.get_type_symbol(right.array_info().elem_type) if left.kind != right_sym.kind { c.error('the data type on the left of `in` does not match the array item type', infix_expr.pos) } } .map { key_sym := c.table.get_type_symbol(right.map_info().key_type) if left.kind != key_sym.kind { c.error('the data type on the left of `in` does not match the map key type', infix_expr.pos) } } .string { if left.kind != .string { c.error('the data type on the left of `in` must be a string', infix_expr.pos) } } else { c.error('`in` can only be used with an array/map/string', infix_expr.pos) } } return table.bool_type } .plus, .minus, .mul, .div { if infix_expr.op == .div && (infix_expr.right is ast.IntegerLiteral && infix_expr.right.str() == '0' || infix_expr.right is ast.FloatLiteral && infix_expr.right.str().f64() == 0.0) { c.error('division by zero', infix_expr.right.position()) } if left.kind in [.array, .array_fixed, .map, .struct_] && !left.has_method(infix_expr.op.str()) { c.error('mismatched types `$left.name` and `$right.name`', infix_expr.left.position()) } else if right.kind in [.array, .array_fixed, .map, .struct_] && !right.has_method(infix_expr.op.str()) { c.error('mismatched types `$left.name` and `$right.name`', infix_expr.right.position()) } } .left_shift { if left.kind == .array { // `array << elm` c.fail_if_immutable(infix_expr.left) // the expressions have different types (array_x and x) if c.table.check(c.table.value_type(left_type), right_type) { // []T << T return table.void_type } if right.kind == .array && c.table.check(c.table.value_type(left_type), c.table.value_type(right_type)) { // []T << []T return table.void_type } c.error('cannot shift type $right.name into $left.name', infix_expr.right.position()) return table.void_type } else if !left.is_int() { c.error('cannot shift type $right.name into non-integer type $left.name', infix_expr.left.position()) return table.void_type } else if !right.is_int() { c.error('cannot shift non-integer type $right.name into type $left.name', infix_expr.right.position()) return table.void_type } } .key_is { type_expr := infix_expr.right as ast.Type typ_sym := c.table.get_type_symbol(type_expr.typ) if typ_sym.kind == .placeholder { c.error('is: type `${typ_sym.name}` does not exist', type_expr.pos) } return table.bool_type } .amp, .pipe, .xor { if !left.is_int() { c.error('left type of `${infix_expr.op.str()}` cannot be non-integer type $left.name', infix_expr.left.position()) } else if !right.is_int() { c.error('right type of `${infix_expr.op.str()}` cannot be non-integer type $right.name', infix_expr.right.position()) } } .mod { if left.is_int() && !right.is_int() { c.error('mismatched types `$left.name` and `$right.name`', infix_expr.right.position()) } else if !left.is_int() && right.is_int() { c.error('mismatched types `$left.name` and `$right.name`', infix_expr.left.position()) } else if left.kind in [.f32, .f64, .string, .array, .array_fixed, .map, .struct_] && !left.has_method(infix_expr.op.str()) { c.error('mismatched types `$left.name` and `$right.name`', infix_expr.left.position()) } else if right.kind in [.f32, .f64, .string, .array, .array_fixed, .map, .struct_] && !right.has_method(infix_expr.op.str()) { c.error('mismatched types `$left.name` and `$right.name`', infix_expr.right.position()) } } else {} } // TODO: Absorb this block into the above single side check block to accelerate. if left_type == table.bool_type && infix_expr.op !in [.eq, .ne, .logical_or, .and] { c.error('bool types only have the following operators defined: `==`, `!=`, `||`, and `&&`', infix_expr.pos) } else if left_type == table.string_type && infix_expr.op !in [.plus, .eq, .ne, .lt, .gt, .le, .ge] { // TODO broken !in c.error('string types only have the following operators defined: `==`, `!=`, `<`, `>`, `<=`, `>=`, and `&&`', infix_expr.pos) } // Dual sides check (compatibility check) if !c.table.check(right_type, left_type) { // for type-unresolved consts if left_type == table.void_type || right_type == table.void_type { return table.void_type } c.error('infix expr: cannot use `$right.name` (right expression) as `$left.name`', infix_expr.pos) } return if infix_expr.op.is_relational() { table.bool_type } else { left_type } } fn (mut c Checker) fail_if_immutable(expr ast.Expr) { match expr { ast.Ident { scope := c.file.scope.innermost(expr.position().pos) if v := scope.find_var(it.name) { if !v.is_mut && !v.typ.is_ptr() { c.error('`$it.name` is immutable, declare it with `mut` to make it mutable', it.pos) } } } ast.IndexExpr { c.fail_if_immutable(it.left) } ast.ParExpr { c.fail_if_immutable(it.expr) } ast.PrefixExpr { c.fail_if_immutable(it.right) } ast.SelectorExpr { // retrieve table.Field if it.expr_type == 0 { c.error('0 type in SelectorExpr', expr.position()) return } typ_sym := c.table.get_type_symbol(it.expr_type) match typ_sym.kind { .struct_ { struct_info := typ_sym.info as table.Struct field_info := struct_info.get_field(it.field) if !field_info.is_mut { type_str := c.table.type_to_str(it.expr_type) c.error('field `$it.field` of struct `${type_str}` is immutable', it.pos) } c.fail_if_immutable(it.expr) } .array, .string { // This should only happen in `builtin` // TODO Remove `crypto.rand` when possible (see vlib/crypto/rand/rand.v, // if `c_array_to_bytes_tmp` doesn't exist, then it's safe to remove it) if c.file.mod.name !in ['builtin', 'crypto.rand'] { c.error('`$typ_sym.kind` can not be modified', it.pos) } } else { c.error('unexpected symbol `${typ_sym.kind}`', it.pos) } } } else { c.error('unexpected expression `${typeof(expr)}`', expr.position()) } } } fn (mut c Checker) assign_expr(assign_expr mut ast.AssignExpr) { c.expected_type = table.void_type left_type := c.expr(assign_expr.left) c.expected_type = left_type assign_expr.left_type = left_type // println('setting exp type to $c.expected_type $t.name') right_type := c.expr(assign_expr.val) assign_expr.right_type = right_type right := c.table.get_type_symbol(right_type) left := c.table.get_type_symbol(left_type) if ast.expr_is_blank_ident(assign_expr.left) { return } // Make sure the variable is mutable c.fail_if_immutable(assign_expr.left) // Single side check match assign_expr.op { .assign {} // No need to do single side check for =. But here put it first for speed. .plus_assign { if !left.is_number() && left_type != table.string_type && !left.is_pointer() { c.error('operator += not defined on left operand type `$left.name`', assign_expr.left.position()) } else if !right.is_number() && right_type != table.string_type && !right.is_pointer() { c.error('operator += not defined on right operand type `$right.name`', assign_expr.val.position()) } } .minus_assign { if !left.is_number() && !left.is_pointer() { c.error('operator -= not defined on left operand type `$left.name`', assign_expr.left.position()) } else if !right.is_number() && !right.is_pointer() { c.error('operator -= not defined on right operand type `$right.name`', assign_expr.val.position()) } } .mult_assign, .div_assign { if !left.is_number() { c.error('operator ${assign_expr.op.str()} not defined on left operand type `$left.name`', assign_expr.left.position()) } else if !right.is_number() { c.error('operator ${assign_expr.op.str()} not defined on right operand type `$right.name`', assign_expr.val.position()) } } .and_assign, .or_assign, .xor_assign, .mod_assign, .left_shift_assign, .right_shift_assign { if !left.is_int() { c.error('operator ${assign_expr.op.str()} not defined on left operand type `$left.name`', assign_expr.left.position()) } else if !right.is_int() { c.error('operator ${assign_expr.op.str()} not defined on right operand type `$right.name`', assign_expr.val.position()) } } else {} } // Dual sides check (compatibility check) if !c.table.check(right_type, left_type) { left_type_sym := c.table.get_type_symbol(left_type) right_type_sym := c.table.get_type_symbol(right_type) c.error('cannot assign `$right_type_sym.name` to variable `${assign_expr.left.str()}` of type `$left_type_sym.name`', assign_expr.val.position()) } c.check_expr_opt_call(assign_expr.val, right_type, true) } pub fn (mut c Checker) call_expr(call_expr mut ast.CallExpr) table.Type { c.stmts(call_expr.or_block.stmts) if call_expr.is_method { return c.call_method(call_expr) } return c.call_fn(call_expr) } pub fn (mut c Checker) call_method(call_expr mut ast.CallExpr) table.Type { left_type := c.expr(call_expr.left) call_expr.left_type = left_type left_type_sym := c.table.get_type_symbol(left_type) method_name := call_expr.name // TODO: remove this for actual methods, use only for compiler magic if left_type_sym.kind == .array && method_name in ['filter', 'clone', 'repeat', 'reverse', 'map', 'slice'] { if method_name in ['filter', 'map'] { array_info := left_type_sym.info as table.Array mut scope := c.file.scope.innermost(call_expr.pos.pos) scope.update_var_type('it', array_info.elem_type) } for arg in call_expr.args { c.expr(arg.expr) } // need to return `array_xxx` instead of `array` call_expr.return_type = left_type if method_name == 'clone' { // in ['clone', 'str'] { call_expr.receiver_type = left_type.to_ptr() // call_expr.return_type = call_expr.receiver_type } else { call_expr.receiver_type = left_type } return left_type } else if left_type_sym.kind == .array && method_name in ['first', 'last'] { info := left_type_sym.info as table.Array call_expr.return_type = info.elem_type call_expr.receiver_type = left_type return info.elem_type } if method := c.table.type_find_method(left_type_sym, method_name) { if !method.is_pub && !c.is_builtin_mod && !c.pref.is_test && left_type_sym.mod != c.mod && left_type_sym.mod != '' { // method.mod != c.mod { // If a private method is called outside of the module // its receiver type is defined in, show an error. // println('warn $method_name lef.mod=$left_type_sym.mod c.mod=$c.mod') c.error('method `${left_type_sym.name}.$method_name` is private', call_expr.pos) } if method.return_type == table.void_type && method.ctdefine.len > 0 && method.ctdefine !in c.pref.compile_defines { call_expr.should_be_skipped = true } nr_args := if method.args.len == 0 { 0 } else { method.args.len - 1 } min_required_args := method.args.len - if method.is_variadic && method.args.len > 1 { 2 } else { 1 } if call_expr.args.len < min_required_args { c.error('too few arguments in call to `${left_type_sym.name}.$method_name` ($call_expr.args.len instead of $min_required_args)', call_expr.pos) } else if !method.is_variadic && call_expr.args.len > nr_args { c.error('!too many arguments in call to `${left_type_sym.name}.$method_name` ($call_expr.args.len instead of $nr_args)', call_expr.pos) return method.return_type } // if method_name == 'clone' { // println('CLONE nr args=$method.args.len') // } // call_expr.args << method.args[0].typ // call_expr.exp_arg_types << method.args[0].typ for i, arg in call_expr.args { c.expected_type = if method.is_variadic && i >= method.args.len - 1 { method.args[method.args.len - 1].typ } else { method.args[i + 1].typ } arg_typ := c.expr(arg.expr) call_expr.args[i].typ = arg_typ if method.is_variadic && arg_typ.flag_is(.variadic) && call_expr.args.len - 1 > i { c.error('when forwarding a varg variable, it must be the final argument', call_expr.pos) } } // TODO: typ optimize.. this node can get processed more than once if call_expr.expected_arg_types.len == 0 { for i in 1 .. method.args.len { call_expr.expected_arg_types << method.args[i].typ } } call_expr.receiver_type = method.args[0].typ call_expr.return_type = method.return_type return method.return_type } // TODO: str methods if method_name == 'str' { call_expr.receiver_type = left_type call_expr.return_type = table.string_type return table.string_type } // call struct field fn type // TODO: can we use SelectorExpr for all? if field := c.table.struct_find_field(left_type_sym, method_name) { field_type_sym := c.table.get_type_symbol(field.typ) if field_type_sym.kind == .function { call_expr.is_method = false info := field_type_sym.info as table.FnType call_expr.return_type = info.func.return_type return info.func.return_type } } c.error('unknown method: `${left_type_sym.name}.$method_name`', call_expr.pos) return table.void_type } pub fn (mut c Checker) call_fn(call_expr mut ast.CallExpr) table.Type { if call_expr.name == 'panic' { c.returns = true } fn_name := call_expr.name if fn_name == 'main' { c.error('the `main` function cannot be called in the program', call_expr.pos) } if fn_name == 'typeof' { // TODO: impl typeof properly (probably not going to be a fn call) return table.string_type } // if c.fileis('json_test.v') { // println(fn_name) // } if fn_name == 'json.encode' { } // look for function in format `mod.fn` or `fn` (main/builtin) mut f := table.Fn{} mut found := false mut found_in_args := false // try prefix with current module as it would have never gotten prefixed if !fn_name.contains('.') && call_expr.mod !in ['builtin', 'main'] { name_prefixed := '${call_expr.mod}.$fn_name' if f1 := c.table.find_fn(name_prefixed) { call_expr.name = name_prefixed found = true f = f1 } } // already prefixed (mod.fn) or C/builtin/main if !found { if f1 := c.table.find_fn(fn_name) { found = true f = f1 } } // check for arg (var) of fn type if !found { scope := c.file.scope.innermost(call_expr.pos.pos) if v := scope.find_var(fn_name) { if v.typ != 0 { vts := c.table.get_type_symbol(v.typ) if vts.kind == .function { info := vts.info as table.FnType f = info.func found = true found_in_args = true } } } } if !found { c.error('unknown function: $fn_name', call_expr.pos) return table.void_type } if !found_in_args && call_expr.mod in ['builtin', 'main'] { scope := c.file.scope.innermost(call_expr.pos.pos) if _ := scope.find_var(fn_name) { c.error('ambiguous call to: `$fn_name`, may refer to fn `$fn_name` or variable `$fn_name`', call_expr.pos) } } call_expr.return_type = f.return_type if f.return_type == table.void_type && f.ctdefine.len > 0 && f.ctdefine !in c.pref.compile_defines { call_expr.should_be_skipped = true } if f.is_c || call_expr.is_c || f.is_js || call_expr.is_js { for arg in call_expr.args { c.expr(arg.expr) } return f.return_type } min_required_args := if f.is_variadic { f.args.len - 1 } else { f.args.len } if call_expr.args.len < min_required_args { c.error('too few arguments in call to `$fn_name` ($call_expr.args.len instead of $min_required_args)', call_expr.pos) } else if !f.is_variadic && call_expr.args.len > f.args.len { c.error('too many arguments in call to `$fn_name` ($call_expr.args.len instead of $f.args.len)', call_expr.pos) return f.return_type } // println can print anything if fn_name == 'println' || fn_name == 'print' { c.expected_type = table.string_type call_expr.args[0].typ = c.expr(call_expr.args[0].expr) return f.return_type } // TODO: typ optimize.. this node can get processed more than once if call_expr.expected_arg_types.len == 0 { for arg in f.args { call_expr.expected_arg_types << arg.typ } } for i, call_arg in call_expr.args { arg := if f.is_variadic && i >= f.args.len - 1 { f.args[f.args.len - 1] } else { f.args[i] } c.expected_type = arg.typ typ := c.expr(call_arg.expr) call_expr.args[i].typ = typ typ_sym := c.table.get_type_symbol(typ) arg_typ_sym := c.table.get_type_symbol(arg.typ) if f.is_variadic && typ.flag_is(.variadic) && call_expr.args.len - 1 > i { c.error('when forwarding a varg variable, it must be the final argument', call_expr.pos) } if !c.table.check(typ, arg.typ) { // str method, allow type with str method if fn arg is string if arg_typ_sym.kind == .string && typ_sym.has_method('str') { continue } if typ_sym.kind == .void && arg_typ_sym.kind == .string { continue } if f.is_generic { continue } if typ_sym.kind == .array_fixed { } // println('fixed') c.error('cannot use type `$typ_sym.str()` as type `$arg_typ_sym.str()` in argument ${i+1} to `$fn_name`', call_expr.pos) } } return f.return_type } pub fn (mut c Checker) check_expr_opt_call(x ast.Expr, xtype table.Type, is_return_used bool) { match x { ast.CallExpr { if it.return_type.flag_is(.optional) { c.check_or_block(it, xtype, is_return_used) } } else {} } } pub fn (mut c Checker) check_or_block(call_expr mut ast.CallExpr, ret_type table.Type, is_ret_used bool) { if !call_expr.or_block.is_used { c.error('${call_expr.name}() returns an option, but you missed to add an `or {}` block to it', call_expr.pos) return } stmts_len := call_expr.or_block.stmts.len if stmts_len == 0 { if is_ret_used { // x := f() or {} c.error('assignment requires a non empty `or {}` block', call_expr.pos) return } // allow `f() or {}` return } last_stmt := call_expr.or_block.stmts[stmts_len - 1] if is_ret_used { if !c.is_last_or_block_stmt_valid(last_stmt) { expected_type_name := c.table.get_type_symbol(ret_type).name c.error('last statement in the `or {}` block should return ‘$expected_type_name‘', call_expr.pos) return } match last_stmt { ast.ExprStmt { type_fits := c.table.check(c.expr(it.expr), ret_type) is_panic_or_exit := is_expr_panic_or_exit(it.expr) if type_fits || is_panic_or_exit { return } type_name := c.table.get_type_symbol(c.expr(it.expr)).name expected_type_name := c.table.get_type_symbol(ret_type).name c.error('wrong return type `$type_name` in the `or {}` block, expected `$expected_type_name`', it.pos) return } ast.BranchStmt { if it.tok.kind !in [.key_continue, .key_break] { c.error('only break/continue is allowed as a branch statement in the end of an `or {}` block', it.tok.position()) return } } else {} } return } } fn is_expr_panic_or_exit(expr ast.Expr) bool { match expr { ast.CallExpr { return it.name in ['panic', 'exit'] } else { return false } } } // TODO: merge to check_or_block when v can handle it pub fn (mut c Checker) is_last_or_block_stmt_valid(stmt ast.Stmt) bool { return match stmt { ast.Return { true } ast.BranchStmt { true } ast.ExprStmt { true } else { false } } } pub fn (mut c Checker) selector_expr(selector_expr mut ast.SelectorExpr) table.Type { typ := c.expr(selector_expr.expr) if typ == table.void_type_idx { c.error('unknown selector expression', selector_expr.pos) return table.void_type } selector_expr.expr_type = typ // println('sel expr line_nr=$selector_expr.pos.line_nr typ=$selector_expr.expr_type') typ_sym := c.table.get_type_symbol(typ) field_name := selector_expr.field // variadic if typ.flag_is(.variadic) { if field_name == 'len' { return table.int_type } } if field := c.table.struct_find_field(typ_sym, field_name) { return field.typ } if typ_sym.kind != .struct_ { c.error('`$typ_sym.name` is not a struct', selector_expr.pos) } else { c.error('unknown field `${typ_sym.name}.$field_name`', selector_expr.pos) } return table.void_type } // TODO: non deferred pub fn (mut c Checker) return_stmt(return_stmt mut ast.Return) { c.expected_type = c.fn_return_type if return_stmt.exprs.len > 0 && c.fn_return_type == table.void_type { c.error('too many arguments to return, current function does not return anything', return_stmt.pos) return } else if return_stmt.exprs.len == 0 && c.fn_return_type != table.void_type { c.error('too few arguments to return', return_stmt.pos) return } if return_stmt.exprs.len == 0 { return } expected_type := c.fn_return_type expected_type_sym := c.table.get_type_symbol(expected_type) exp_is_optional := expected_type.flag_is(.optional) mut expected_types := [expected_type] if expected_type_sym.kind == .multi_return { mr_info := expected_type_sym.info as table.MultiReturn expected_types = mr_info.types } mut got_types := []table.Type{} for expr in return_stmt.exprs { typ := c.expr(expr) got_types << typ } return_stmt.types = got_types // allow `none` & `error (Option)` return types for function that returns optional if exp_is_optional && got_types[0].idx() in [table.none_type_idx, c.table.type_idxs['Option']] { return } if expected_types.len > 0 && expected_types.len != got_types.len { // c.error('wrong number of return arguments:\n\texpected: $expected_table.str()\n\tgot: $got_types.str()', return_stmt.pos) c.error('wrong number of return arguments', return_stmt.pos) } for i, exp_typ in expected_types { got_typ := got_types[i] if !c.table.check(got_typ, exp_typ) { got_typ_sym := c.table.get_type_symbol(got_typ) exp_typ_sym := c.table.get_type_symbol(exp_typ) pos := return_stmt.exprs[i].position() c.error('cannot use `$got_typ_sym.name` as type `$exp_typ_sym.name` in return argument', pos) } } } pub fn (mut c Checker) enum_decl(decl ast.EnumDecl) { for field in decl.fields { if field.has_expr { match field.expr { ast.IntegerLiteral {} ast.PrefixExpr {} else { if field.expr is ast.Ident { expr := field.expr as ast.Ident if expr.is_c { continue } } mut pos := field.expr.position() if pos.pos == 0 { pos = field.pos } c.error('default value for enum has to be an integer', pos) } } } } } pub fn (mut c Checker) assign_stmt(assign_stmt mut ast.AssignStmt) { c.expected_type = table.none_type // TODO a hack to make `x := if ... work` // check variablename for beginning with capital letter 'Abc' for ident in assign_stmt.left { is_decl := assign_stmt.op == .decl_assign if is_decl && util.contains_capital(ident.name) { c.error('variable names cannot contain uppercase letters, use snake_case instead', ident.pos) } else if is_decl && ident.kind != .blank_ident { if ident.name.starts_with('__') { c.error('variable names cannot start with `__`', ident.pos) } } } if assign_stmt.left.len > assign_stmt.right.len { // multi return match assign_stmt.right[0] { ast.CallExpr {} else { c.error('assign_stmt: expected call', assign_stmt.pos) } } right_type := c.expr(assign_stmt.right[0]) right_type_sym := c.table.get_type_symbol(right_type) if right_type_sym.kind != .multi_return { c.error('expression on the right does not return multiple values, while at least $assign_stmt.left.len are expected', assign_stmt.pos) return } mr_info := right_type_sym.mr_info() if mr_info.types.len < assign_stmt.left.len { c.error('right expression returns only $mr_info.types.len values, but left one expects $assign_stmt.left.len', assign_stmt.pos) } mut scope := c.file.scope.innermost(assign_stmt.pos.pos) for i, _ in assign_stmt.left { mut ident := assign_stmt.left[i] mut ident_var_info := ident.var_info() if i >= mr_info.types.len { continue } val_type := mr_info.types[i] if assign_stmt.op == .assign { var_type := c.expr(ident) assign_stmt.left_types << var_type if !c.table.check(val_type, var_type) { val_type_sym := c.table.get_type_symbol(val_type) var_type_sym := c.table.get_type_symbol(var_type) c.error('assign stmt: cannot use `$val_type_sym.name` as `$var_type_sym.name`', assign_stmt.pos) } } ident_var_info.typ = val_type ident.info = ident_var_info assign_stmt.left[i] = ident assign_stmt.right_types << val_type scope.update_var_type(ident.name, val_type) } c.check_expr_opt_call(assign_stmt.right[0], right_type, true) } else { // `a := 1` | `a,b := 1,2` if assign_stmt.left.len != assign_stmt.right.len { c.error('wrong number of vars', assign_stmt.pos) } mut scope := c.file.scope.innermost(assign_stmt.pos.pos) for i, _ in assign_stmt.left { mut ident := assign_stmt.left[i] if assign_stmt.op == .decl_assign { c.var_decl_name = ident.name } mut ident_var_info := ident.var_info() // c.assigned_var_name = ident.name val_type := c.expr(assign_stmt.right[i]) if val_type == table.void_type { c.error('expression does not return a value', assign_stmt.right[i].position()) } if assign_stmt.op == .assign { var_type := c.expr(ident) assign_stmt.left_types << var_type if !c.table.check(val_type, var_type) { val_type_sym := c.table.get_type_symbol(val_type) var_type_sym := c.table.get_type_symbol(var_type) c.error('assign stmt: cannot use `$val_type_sym.name` as `$var_type_sym.name`', assign_stmt.pos) } } ident_var_info.typ = val_type ident.info = ident_var_info assign_stmt.left[i] = ident assign_stmt.right_types << val_type scope.update_var_type(ident.name, val_type) c.check_expr_opt_call(assign_stmt.right[i], val_type, true) } } c.var_decl_name = '' c.expected_type = table.void_type // c.assigned_var_name = '' } pub fn (mut c Checker) array_init(array_init mut ast.ArrayInit) table.Type { // println('checker: array init $array_init.pos.line_nr $c.file.path') mut elem_type := table.void_type // []string - was set in parser if array_init.typ != table.void_type { return array_init.typ } // a = [] if array_init.exprs.len == 0 { if array_init.has_cap { if c.expr(array_init.cap_expr) != table.int_type { c.error('array cap needs to be an int', array_init.pos) } } if array_init.has_len { if c.expr(array_init.len_expr) != table.int_type { c.error('array len needs to be an int', array_init.pos) } } type_sym := c.table.get_type_symbol(c.expected_type) if type_sym.kind != .array { c.error('array_init: no type specified (maybe: `[]Type` instead of `[]`)', array_init.pos) return table.void_type } // TODO: seperate errors once bug is fixed with `x := if expr { ... } else { ... }` // if c.expected_type == table.void_type { // c.error('array_init: use `[]Type` instead of `[]`', array_init.pos) // return table.void_type // } array_info := type_sym.array_info() array_init.elem_type = array_info.elem_type return c.expected_type } // [1,2,3] if array_init.exprs.len > 0 && array_init.elem_type == table.void_type { mut expected_value_type := table.void_type mut expecting_interface_array := false cap := array_init.exprs.len mut interface_types := []table.Type{cap: cap} if c.expected_type != 0 { expected_value_type = c.table.value_type(c.expected_type) if c.table.get_type_symbol(expected_value_type).kind == .interface_ { // Array of interfaces? (`[dog, cat]`) Save the interface type (`Animal`) expecting_interface_array = true array_init.interface_type = expected_value_type array_init.is_interface = true } } // expecting_interface_array := c.expected_type != 0 && // c.table.get_type_symbol(c.table.value_type(c.expected_type)).kind == .interface_ // // if expecting_interface_array { // println('ex $c.expected_type') // } for i, expr in array_init.exprs { typ := c.expr(expr) if expecting_interface_array { if i == 0 { elem_type = expected_value_type c.expected_type = elem_type } interface_types << typ continue } // The first element's type if i == 0 { elem_type = typ c.expected_type = typ continue } if !c.table.check(elem_type, typ) { elem_type_sym := c.table.get_type_symbol(elem_type) c.error('expected array element with type `$elem_type_sym.name`', array_init.pos) } } if expecting_interface_array { array_init.interface_types = interface_types } if array_init.is_fixed { idx := c.table.find_or_register_array_fixed(elem_type, array_init.exprs.len, 1) array_init.typ = table.new_type(idx) } else { idx := c.table.find_or_register_array(elem_type, 1) array_init.typ = table.new_type(idx) } array_init.elem_type = elem_type } else if array_init.is_fixed && array_init.exprs.len == 1 && array_init.elem_type != table.void_type { // [50]byte mut fixed_size := 1 match array_init.exprs[0] { ast.IntegerLiteral { fixed_size = it.val.int() } ast.Ident { // if obj := c.file.global_scope.find_const(it.name) { // if obj := scope.find(it.name) { // scope := c.file.scope.innermost(array_init.pos.pos) // eprintln('scope: ${scope.str()}') // scope.find(it.name) or { // c.error('undefined: `$it.name`', array_init.pos) // } mut full_const_name := if it.mod == 'main' { it.name } else { it.mod + '.' + it.name } if obj := c.file.global_scope.find_const(full_const_name) { if cint := const_int_value(obj) { fixed_size = cint } } else { c.error('non existant integer const $full_const_name while initializing the size of a static array', array_init.pos) } } else { c.error('expecting `int` for fixed size', array_init.pos) } } idx := c.table.find_or_register_array_fixed(array_init.elem_type, fixed_size, 1) array_type := table.new_type(idx) array_init.typ = array_type } return array_init.typ } fn const_int_value(cfield ast.ConstField) ?int { if cint := is_const_integer(cfield) { return cint.val.int() } return none } fn is_const_integer(cfield ast.ConstField) ?ast.IntegerLiteral { match cfield.expr { ast.IntegerLiteral { return *it } else {} } return none } fn (mut c Checker) stmt(node ast.Stmt) { // c.expected_type = table.void_type match mut node { ast.AssertStmt { assert_type := c.expr(it.expr) if assert_type != table.bool_type_idx { atype_name := c.table.get_type_symbol(assert_type).name c.error('assert can be used only with `bool` expressions, but found `${atype_name}` instead', it.pos) } } // ast.Attr {} ast.AssignStmt { c.assign_stmt(mut it) } ast.Block { c.stmts(it.stmts) } ast.BranchStmt { if c.in_for_count == 0 { c.error('$it.tok.lit statement not within a loop', it.tok.position()) } } ast.CompIf { // c.expr(it.cond) c.stmts(it.stmts) if it.has_else { c.stmts(it.else_stmts) } } ast.ConstDecl { mut field_names := []string{} mut field_order := []int{} for i, field in it.fields { field_names << field.name field_order << i } mut needs_order := false mut done_fields := []int{} for i, field in it.fields { c.const_decl = field.name c.const_deps << field.name typ := c.expr(field.expr) it.fields[i].typ = typ for cd in c.const_deps { for j, f in it.fields { if j != i && cd in field_names && cd == f.name && j !in done_fields { needs_order = true x := field_order[j] field_order[j] = field_order[i] field_order[i] = x break } } } done_fields << i c.const_deps = [] } if needs_order { mut ordered_fields := []ast.ConstField{} for order in field_order { ordered_fields << it.fields[order] } it.fields = ordered_fields } } ast.DeferStmt { c.stmts(it.stmts) } ast.EnumDecl { c.enum_decl(it) } ast.ExprStmt { etype := c.expr(it.expr) c.expected_type = table.void_type c.check_expr_opt_call(it.expr, etype, false) } ast.FnDecl { // if it.is_method { // sym := c.table.get_type_symbol(it.receiver.typ) // if sym.has_method(it.name) { // c.warn('duplicate method `$it.name`', it.pos) // } // } if !it.is_c { // Make sure all types are valid for arg in it.args { sym := c.table.get_type_symbol(arg.typ) if sym.kind == .placeholder { c.error('unknown type `$sym.name`', it.pos) } } } c.expected_type = table.void_type c.fn_return_type = it.return_type c.stmts(it.stmts) if !it.is_c && !it.is_js && !it.no_body && it.return_type != table.void_type && !c.returns && it.name !in ['panic', 'exit'] { c.error('missing return at end of function `$it.name`', it.pos) } c.returns = false } ast.ForCStmt { c.in_for_count++ c.stmt(it.init) c.expr(it.cond) // c.stmt(it.inc) c.expr(it.inc) c.stmts(it.stmts) c.in_for_count-- } ast.ForInStmt { c.in_for_count++ typ := c.expr(it.cond) typ_idx := typ.idx() if it.is_range { high_type_idx := c.expr(it.high).idx() if typ_idx in table.integer_type_idxs && high_type_idx !in table.integer_type_idxs { c.error('range types do not match', it.cond.position()) } else if typ_idx in table.float_type_idxs || high_type_idx in table.float_type_idxs { c.error('range type can not be float', it.cond.position()) } else if typ_idx == table.bool_type_idx || high_type_idx == table.bool_type_idx { c.error('range type can not be bool', it.cond.position()) } else if typ_idx == table.string_type_idx || high_type_idx == table.string_type_idx { c.error('range type can not be string', it.cond.position()) } c.expr(it.high) } else { mut scope := c.file.scope.innermost(it.pos.pos) sym := c.table.get_type_symbol(typ) if it.key_var.len > 0 { key_type := match sym.kind { .map { sym.map_info().key_type } else { table.int_type } } it.key_type = key_type scope.update_var_type(it.key_var, key_type) } value_type := c.table.value_type(typ) if value_type == table.void_type { typ_sym := c.table.get_type_symbol(typ) c.error('for in: cannot index `$typ_sym.name`', it.cond.position()) } it.cond_type = typ it.kind = sym.kind it.val_type = value_type scope.update_var_type(it.val_var, value_type) } c.stmts(it.stmts) c.in_for_count-- } ast.ForStmt { c.in_for_count++ typ := c.expr(it.cond) if !it.is_inf && typ.idx() != table.bool_type_idx { c.error('non-bool used as for condition', it.pos) } // TODO: update loop var type // how does this work currenly? c.stmts(it.stmts) c.in_for_count-- } // ast.GlobalDecl {} ast.GoStmt { if !(it.call_expr is ast.CallExpr) { c.error('expression in `go` must be a function call', it.call_expr.position()) } c.expr(it.call_expr) } // ast.HashStmt {} ast.Import {} ast.Module { c.mod = it.name c.is_builtin_mod = it.name == 'builtin' } ast.Return { c.returns = true c.return_stmt(mut it) c.scope_returns = true } ast.StructDecl { c.struct_decl(it) } ast.TypeDecl { c.type_decl(it) } ast.UnsafeStmt { c.stmts(it.stmts) } else { // println('checker.stmt(): unhandled node') // println('checker.stmt(): unhandled node (${typeof(node)})') } } } fn (mut c Checker) stmts(stmts []ast.Stmt) { mut unreachable := token.Position{line_nr: -1} c.expected_type = table.void_type for stmt in stmts { if c.scope_returns { if unreachable.line_nr == -1 { unreachable = stmt.position() } } c.stmt(stmt) } if unreachable.line_nr >= 0 { c.warn('unreachable code', unreachable) } c.scope_returns = false c.expected_type = table.void_type } pub fn (mut c Checker) expr(node ast.Expr) table.Type { match mut node { ast.ArrayInit { return c.array_init(mut it) } ast.AsCast { it.expr_type = c.expr(it.expr) expr_type_sym := c.table.get_type_symbol(it.expr_type) type_sym := c.table.get_type_symbol(it.typ) if expr_type_sym.kind == .sum_type { info := expr_type_sym.info as table.SumType if it.typ !in info.variants { c.error('cannot cast `$expr_type_sym.name` to `$type_sym.name`', it.pos) // c.error('only $info.variants can be casted to `$typ`', it.pos) } } else { // c.error('cannot cast non sum type `$type_sym.name` using `as`', it.pos) } return it.typ.to_ptr() // return it.typ } ast.AssignExpr { c.assign_expr(mut it) } ast.Assoc { scope := c.file.scope.innermost(it.pos.pos) v := scope.find_var(it.var_name) or { panic(err) } for i, _ in it.fields { c.expr(it.exprs[i]) } it.typ = v.typ return v.typ } ast.BoolLiteral { return table.bool_type } ast.CastExpr { it.expr_type = c.expr(it.expr) if it.has_arg { c.expr(it.arg) } it.typname = c.table.get_type_symbol(it.typ).name return it.typ } ast.CallExpr { return c.call_expr(mut it) } ast.CharLiteral { return table.byte_type } ast.EnumVal { return c.enum_val(mut it) } ast.FloatLiteral { return table.f64_type } ast.Ident { // c.checked_ident = it.name res := c.ident(mut it) // c.checked_ident = '' return res } ast.IfExpr { return c.if_expr(mut it) } ast.IfGuardExpr { it.expr_type = c.expr(it.expr) return table.bool_type } ast.IndexExpr { return c.index_expr(mut it) } ast.InfixExpr { return c.infix_expr(mut it) } ast.IntegerLiteral { return table.int_type } ast.MapInit { return c.map_init(mut it) } ast.MatchExpr { return c.match_expr(mut it) } ast.PostfixExpr { return c.postfix_expr(it) } ast.PrefixExpr { right_type := c.expr(it.right) // TODO: testing ref/deref strategy if it.op == .amp && !right_type.is_ptr() { return right_type.to_ptr() } if it.op == .mul && right_type.is_ptr() { return right_type.deref() } if it.op == .not && right_type != table.bool_type_idx { c.error('! operator can only be used with bool types', it.pos) } return right_type } ast.None { return table.none_type } ast.ParExpr { return c.expr(it.expr) } ast.SelectorExpr { return c.selector_expr(mut it) } ast.SizeOf { return table.int_type } ast.StringLiteral { if it.is_c { return table.byteptr_type } return table.string_type } ast.StringInterLiteral { for expr in it.exprs { it.expr_types << c.expr(expr) } return table.string_type } ast.StructInit { return c.struct_init(mut it) } ast.Type { return it.typ } ast.TypeOf { it.expr_type = c.expr(it.expr) return table.string_type } ast.AnonFn { c.fn_return_type = it.decl.return_type c.stmts(it.decl.stmts) return it.typ } else { tnode := typeof(node) if tnode != 'unknown v.ast.Expr' { println('checker.expr(): unhandled node with typeof(`${tnode}`)') } } } return table.void_type } pub fn (mut c Checker) ident(ident mut ast.Ident) table.Type { if ident.name == c.var_decl_name { // c.checked_ident { c.error('unresolved: `$ident.name`', ident.pos) return table.void_type } // TODO: move this if c.const_deps.len > 0 { mut name := ident.name if !name.contains('.') && ident.mod !in ['builtin', 'main'] { name = '${ident.mod}.$ident.name' } if name == c.const_decl { c.error('cycle in constant `$c.const_decl`', ident.pos) return table.void_type } c.const_deps << name } if ident.kind == .blank_ident { return table.void_type } // second use if ident.kind == .variable { info := ident.info as ast.IdentVar return info.typ } else if ident.kind == .constant { info := ident.info as ast.IdentVar return info.typ } else if ident.kind == .function { info := ident.info as ast.IdentFn return info.typ } else if ident.kind == .unresolved { // first use start_scope := c.file.scope.innermost(ident.pos.pos) if obj := start_scope.find(ident.name) { match obj { ast.Var { mut typ := it.typ if typ == 0 { typ = c.expr(it.expr) } is_optional := typ.flag_is(.optional) ident.kind = .variable ident.info = ast.IdentVar{ typ: typ is_optional: is_optional } it.typ = typ // unwrap optional (`println(x)`) if is_optional { return typ.set_flag(.unset) } return typ } else {} } } // prepend mod to look for fn call or const mut name := ident.name if !name.contains('.') && ident.mod !in ['builtin', 'main'] { name = '${ident.mod}.$ident.name' } if obj := c.file.global_scope.find(name) { match obj { ast.GlobalDecl { ident.kind = .global ident.info = ast.IdentVar{ typ: it.typ } return it.typ } ast.ConstField { mut typ := it.typ if typ == 0 { typ = c.expr(it.expr) } ident.name = name ident.kind = .constant ident.info = ast.IdentVar{ typ: typ } it.typ = typ return typ } else {} } } // Function object (not a call), e.g. `onclick(my_click)` if func := c.table.find_fn(name) { fn_type := table.new_type(c.table.find_or_register_fn_type(func, false, true)) ident.name = name ident.kind = .function ident.info = ast.IdentFn{ typ: fn_type } return fn_type } } if ident.is_c { return table.int_type } if ident.name != '_' { c.error('undefined: `$ident.name`', ident.pos) } return table.void_type } pub fn (mut c Checker) match_expr(node mut ast.MatchExpr) table.Type { node.is_expr = c.expected_type != table.void_type node.expected_type = c.expected_type cond_type := c.expr(node.cond) if cond_type == 0 { c.error('match 0 cond type', node.pos) } type_sym := c.table.get_type_symbol(cond_type) if type_sym.kind != .sum_type { node.is_sum_type = false } c.match_exprs(mut node, type_sym) c.expected_type = cond_type mut ret_type := table.void_type for branch in node.branches { for expr in branch.exprs { c.expected_type = cond_type typ := c.expr(expr) typ_sym := c.table.get_type_symbol(typ) // TODO: if typ_sym.kind == .sum_type { } } c.stmts(branch.stmts) // If the last statement is an expression, return its type if branch.stmts.len > 0 { match branch.stmts[branch.stmts.len - 1] { ast.ExprStmt { ret_type = c.expr(it.expr) } else { // TODO: ask alex about this // typ := c.expr(it.expr) // type_sym := c.table.get_type_symbol(typ) // p.warn('match expr ret $type_sym.name') // node.typ = typ // return typ } } } } // if ret_type != table.void_type { // node.is_expr = c.expected_type != table.void_type // node.expected_type = c.expected_type // } node.return_type = ret_type node.cond_type = cond_type // println('!m $expr_type') return ret_type } fn (mut c Checker) match_exprs(node mut ast.MatchExpr, type_sym table.TypeSymbol) { // branch_exprs is a histogram of how many times // an expr was used in the match mut branch_exprs := map[string]int for branch in node.branches { for expr in branch.exprs { mut key := '' match expr { ast.Type { key = c.table.type_to_str(it.typ) } ast.EnumVal { key = it.val } else { key = expr.str() } } val := if key in branch_exprs { branch_exprs[key] } else { 0 } if val == 1 { c.error('match case `$key` is handled more than once', branch.pos) } branch_exprs[key] = val + 1 } } // check that expressions are exhaustive // this is achieved either by putting an else // or, when the match is on a sum type or an enum // by listing all variants or values mut is_exhaustive := true mut unhandled := []string{} match type_sym.info { table.SumType { for v in it.variants { v_str := c.table.type_to_str(v) if v_str !in branch_exprs { is_exhaustive = false unhandled << '`$v_str`' } } } table.Enum { for v in it.vals { if v !in branch_exprs { is_exhaustive = false unhandled << '`.$v`' } } } else { is_exhaustive = false } } mut else_branch := node.branches[node.branches.len - 1] mut has_else := else_branch.is_else if !has_else { for i, branch in node.branches { if branch.is_else && i != node.branches.len - 1 { c.error('`else` must be the last branch of `match`', branch.pos) else_branch = branch has_else = true } } } if is_exhaustive { if has_else { c.error('match expression is exhaustive, `else` is unnecessary', else_branch.pos) } return } if has_else { return } mut err_details := 'match must be exhaustive' if unhandled.len > 0 { err_details += ' (add match branches for: ' + unhandled.join(', ') + ' or `else {}` at the end)' } else { err_details += ' (add `else {}` at the end)' } c.error(err_details, node.pos) } pub fn (mut c Checker) if_expr(node mut ast.IfExpr) table.Type { if c.expected_type != table.void_type { // | c.assigned_var_name != '' { // sym := c.table.get_type_symbol(c.expected_type) // println('$c.file.path $node.pos.line_nr IF is expr: checker exp type = ' + sym.name) node.is_expr = true } node.typ = table.void_type mut first_typ := 0 is_ternary := node.is_expr && node.branches.len >= 2 && node.has_else for i, branch in node.branches { if branch.cond is ast.ParExpr { c.error('unnecessary `()` in an if condition. use `if expr {` instead of `if (expr) {`.', branch.pos) } typ := c.expr(branch.cond) if i < node.branches.len - 1 || !node.has_else { typ_sym := c.table.get_type_symbol(typ) // if typ_sym.kind != .bool { if typ.idx() != table.bool_type_idx { c.error('non-bool (`$typ_sym.name`) used as if condition', node.pos) } } if is_ternary && i < node.branches.len - 1 && branch.stmts.len > 0 { last_stmt := branch.stmts[branch.stmts.len - 1] if last_stmt is ast.ExprStmt { last_expr := last_stmt as ast.ExprStmt first_typ = c.expr(last_expr.expr) } } c.stmts(branch.stmts) } if node.has_else && node.is_expr { last_branch := node.branches[node.branches.len - 1] if last_branch.stmts.len > 0 { match last_branch.stmts[last_branch.stmts.len - 1] { ast.ExprStmt { // type_sym := p.table.get_type_symbol(it.typ) // p.warn('if expr ret $type_sym.name') t := c.expr(it.expr) if is_ternary && t != first_typ { c.error('mismatched types `${c.table.type_to_str(first_typ)}` and `${c.table.type_to_str(t)}`', node.pos) } node.typ = t return t } else {} } } } return table.bool_type } pub fn (mut c Checker) postfix_expr(node ast.PostfixExpr) table.Type { typ := c.expr(node.expr) typ_sym := c.table.get_type_symbol(typ) // if !typ.is_number() { if !typ_sym.is_number() { println(typ_sym.kind.str()) c.error('invalid operation: $node.op.str() (non-numeric type `$typ_sym.name`)', node.pos) } else { c.fail_if_immutable(node.expr) } return typ } pub fn (mut c Checker) index_expr(node mut ast.IndexExpr) table.Type { typ := c.expr(node.left) node.left_type = typ mut is_range := false // TODO is_range := node.index is ast.RangeExpr match node.index { ast.RangeExpr { is_range = true if it.has_low { c.expr(it.low) } if it.has_high { c.expr(it.high) } } else {} } typ_sym := c.table.get_type_symbol(typ) if !is_range { index_type := c.expr(node.index) index_type_sym := c.table.get_type_symbol(index_type) // println('index expr left=$typ_sym.name $node.pos.line_nr') // if typ_sym.kind == .array && (!(table.type_idx(index_type) in table.number_type_idxs) && // index_type_sym.kind != .enum_) { if typ_sym.kind in [.array, .array_fixed] && !(index_type.is_number() || index_type_sym.kind == .enum_) { c.error('non-integer index `$index_type_sym.name` (array type `$typ_sym.name`)', node.pos) } else if typ_sym.kind == .map && index_type.idx() != table.string_type_idx { c.error('non-string map index (map type `$typ_sym.name`)', node.pos) } value_type := c.table.value_type(typ) if value_type != table.void_type { return value_type } } else if is_range { // array[1..2] => array // fixed_array[1..2] => array if typ_sym.kind == .array_fixed { elem_type := c.table.value_type(typ) idx := c.table.find_or_register_array(elem_type, 1) return table.new_type(idx) } } return typ } // `.green` or `Color.green` // If a short form is used, `expected_type` needs to be an enum // with this value. pub fn (mut c Checker) enum_val(node mut ast.EnumVal) table.Type { typ_idx := if node.enum_name == '' { c.expected_type.idx() } else { // c.table.find_type_idx(node.enum_name) } // println('checker: enum_val: $node.enum_name typeidx=$typ_idx') if typ_idx == 0 { c.error('not an enum (name=$node.enum_name) (type_idx=0)', node.pos) } typ := table.new_type(typ_idx) if typ == table.void_type { c.error('not an enum', node.pos) } typ_sym := c.table.get_type_symbol(typ) // println('tname=$typ_sym.name $node.pos.line_nr $c.file.path') if typ_sym.kind != .enum_ { c.error('not an enum', node.pos) } // info := typ_sym.info as table.Enum info := typ_sym.enum_info() // rintln('checker: x = $info.x enum val $c.expected_type $typ_sym.name') // println(info.vals) if node.val !in info.vals { c.error('enum `$typ_sym.name` does not have a value `$node.val`', node.pos) } node.typ = typ return typ } pub fn (mut c Checker) map_init(node mut ast.MapInit) table.Type { // `x ;= map[string]string` - set in parser if node.typ != 0 { info := c.table.get_type_symbol(node.typ).map_info() node.key_type = info.key_type node.value_type = info.value_type return node.typ } // `{'age': 20}` key0_type := c.expr(node.keys[0]) val0_type := c.expr(node.vals[0]) for i, key in node.keys { if i == 0 { continue } val := node.vals[i] key_type := c.expr(key) val_type := c.expr(val) if !c.table.check(key_type, key0_type) { key0_type_sym := c.table.get_type_symbol(key0_type) key_type_sym := c.table.get_type_symbol(key_type) c.error('map init: cannot use `$key_type_sym.name` as `$key0_type_sym` for map key', node.pos) } if !c.table.check(val_type, val0_type) { val0_type_sym := c.table.get_type_symbol(val0_type) val_type_sym := c.table.get_type_symbol(val_type) c.error('map init: cannot use `$val_type_sym.name` as `$val0_type_sym` for map value', node.pos) } } map_type := table.new_type(c.table.find_or_register_map(key0_type, val0_type)) node.typ = map_type node.key_type = key0_type node.value_type = val0_type return map_type } pub fn (mut c Checker) warn(s string, pos token.Position) { allow_warnings := !c.pref.is_prod // allow warnings only in dev builds c.warn_or_error(s, pos, allow_warnings) // allow warnings only in dev builds } pub fn (mut c Checker) error(message string, pos token.Position) { if c.pref.is_verbose { print_backtrace() } c.warn_or_error(message, pos, false) } fn (mut c Checker) warn_or_error(message string, pos token.Position, warn bool) { // add backtrace to issue struct, how? // if c.pref.is_verbose { // print_backtrace() // } if warn { c.nr_warnings++ c.warnings << errors.Warning{ reporter: errors.Reporter.checker pos: pos file_path: c.file.path message: message } } else { c.nr_errors++ if pos.line_nr !in c.error_lines { c.errors << errors.Error{ reporter: errors.Reporter.checker pos: pos file_path: c.file.path message: message } c.error_lines << pos.line_nr } } } // for debugging only fn (c &Checker) fileis(s string) bool { return c.file.path.contains(s) }