v/examples/sokol/04_multi_shader_glsl/rt_glsl_puppy.glsl

569 lines
17 KiB
GLSL

//------------------------------------------------------------------------------
// Shader code for texcube-sapp sample.
//
// NOTE: This source file also uses the '#pragma sokol' form of the
// custom tags.
//------------------------------------------------------------------------------
//#pragma sokol @ctype mat4 hmm_mat4
#pragma sokol @vs vs_p
uniform vs_params_p {
mat4 mvp;
};
in vec4 pos;
in vec4 color0;
in vec2 texcoord0;
out vec4 color;
out vec2 uv;
void main() {
gl_Position = mvp * pos;
color = color0;
uv = texcoord0;
}
#pragma sokol @end
#pragma sokol @fs fs_p
uniform sampler2D tex;
uniform fs_params_p {
vec2 iResolution;
vec2 iMouse;
float iTime;
float iFrame;
};
in vec4 color;
in vec2 uv;
out vec4 frag_color;
// change to 0 to 4 to increment the AntiAliasing,
// increase AA will SLOW the rendering!!
#define AA 1
//*********************************************************
// Ray Marching
// original code from: https://www.shadertoy.com/view/Xds3zN
//*********************************************************
// Created by inigo quilez - iq/2019
// I share this piece (art and code) here in Shadertoy and through its Public API, only for educational purposes.
// You cannot use, share or host this piece or modifications of it as part of your own commercial or non-commercial product, website or project.
// You can share a link to it or an unmodified screenshot of it provided you attribute "by Inigo Quilez, @iquilezles and iquilezles.org".
// If you are a teacher, lecturer, educator or similar and these conditions are too restrictive for your needs, please contact me and we'll work it out.
// An animation test - a happy and blobby creature
// jumping and looking around. It gets off-model very
// often, but it looks good enough I think.
//
// Making-of with math/shader/art explanations (6 hours
// long): https://www.youtube.com/watch?v=Cfe5UQ-1L9Q
//
// Video capture: https://www.youtube.com/watch?v=s_UOFo2IULQ
//
// Buy a metal print here: https://www.redbubble.com/i/metal-print/Happy-Jumping-by-InigoQuilez/43594745.0JXQP
//------------------------------------------------------------------
// http://iquilezles.org/www/articles/smin/smin.htm
float smin( float a, float b, float k )
{
float h = max(k-abs(a-b),0.0);
return min(a, b) - h*h*0.25/k;
}
// http://iquilezles.org/www/articles/smin/smin.htm
vec2 smin( vec2 a, vec2 b, float k )
{
float h = clamp( 0.5+0.5*(b.x-a.x)/k, 0.0, 1.0 );
return mix( b, a, h ) - k*h*(1.0-h);
}
// http://iquilezles.org/www/articles/smin/smin.htm
float smax( float a, float b, float k )
{
float h = max(k-abs(a-b),0.0);
return max(a, b) + h*h*0.25/k;
}
// http://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
float sdSphere( vec3 p, float s )
{
return length(p)-s;
}
// http://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
float sdEllipsoid( in vec3 p, in vec3 r ) // approximated
{
float k0 = length(p/r);
float k1 = length(p/(r*r));
return k0*(k0-1.0)/k1;
}
vec2 sdStick(vec3 p, vec3 a, vec3 b, float r1, float r2) // approximated
{
vec3 pa = p-a, ba = b-a;
float h = clamp( dot(pa,ba)/dot(ba,ba), 0.0, 1.0 );
return vec2( length( pa - ba*h ) - mix(r1,r2,h*h*(3.0-2.0*h)), h );
}
// http://iquilezles.org/www/articles/smin/smin.htm
vec4 opU( vec4 d1, vec4 d2 )
{
return (d1.x<d2.x) ? d1 : d2;
}
//------------------------------------------------------------------
#define ZERO (min(int(iFrame),0))
//------------------------------------------------------------------
float href;
float hsha;
vec4 map( in vec3 pos, float atime )
{
hsha = 1.0;
float t1 = fract(atime);
float t4 = abs(fract(atime*0.5)-0.5)/0.5;
float p = 4.0*t1*(1.0-t1);
float pp = 4.0*(1.0-2.0*t1); // derivative of p
vec3 cen = vec3( 0.5*(-1.0 + 2.0*t4),
pow(p,2.0-p) + 0.1,
floor(atime) + pow(t1,0.7) -1.0 );
// body
vec2 uu = normalize(vec2( 1.0, -pp ));
vec2 vv = vec2(-uu.y, uu.x);
float sy = 0.5 + 0.5*p;
float compress = 1.0-smoothstep(0.0,0.4,p);
sy = sy*(1.0-compress) + compress;
float sz = 1.0/sy;
vec3 q = pos - cen;
float rot = -0.25*(-1.0 + 2.0*t4);
float rc = cos(rot);
float rs = sin(rot);
q.xy = mat2x2(rc,rs,-rs,rc)*q.xy;
vec3 r = q;
href = q.y;
q.yz = vec2( dot(uu,q.yz), dot(vv,q.yz) );
vec4 res = vec4( sdEllipsoid( q, vec3(0.25, 0.25*sy, 0.25*sz) ), 2.0, 0.0, 1.0 );
if( res.x-1.0 < pos.y ) // bounding volume
{
float t2 = fract(atime+0.8);
float p2 = 0.5-0.5*cos(6.2831*t2);
r.z += 0.05-0.2*p2;
r.y += 0.2*sy-0.2;
vec3 sq = vec3( abs(r.x), r.yz );
// head
vec3 h = r;
float hr = sin(0.791*atime);
hr = 0.7*sign(hr)*smoothstep(0.5,0.7,abs(hr));
h.xz = mat2x2(cos(hr),sin(hr),-sin(hr),cos(hr))*h.xz;
vec3 hq = vec3( abs(h.x), h.yz );
float d = sdEllipsoid( h-vec3(0.0,0.20,0.02), vec3(0.08,0.2,0.15) );
float d2 = sdEllipsoid( h-vec3(0.0,0.21,-0.1), vec3(0.20,0.2,0.20) );
d = smin( d, d2, 0.1 );
res.x = smin( res.x, d, 0.1 );
// belly wrinkles
{
float yy = r.y-0.02-2.5*r.x*r.x;
res.x += 0.001*sin(yy*120.0)*(1.0-smoothstep(0.0,0.1,abs(yy)));
}
// arms
{
vec2 arms = sdStick( sq, vec3(0.18-0.06*hr*sign(r.x),0.2,-0.05), vec3(0.3+0.1*p2,-0.2+0.3*p2,-0.15), 0.03, 0.06 );
res.xz = smin( res.xz, arms, 0.01+0.04*(1.0-arms.y)*(1.0-arms.y)*(1.0-arms.y) );
}
// ears
{
float t3 = fract(atime+0.9);
float p3 = 4.0*t3*(1.0-t3);
vec2 ear = sdStick( hq, vec3(0.15,0.32,-0.05), vec3(0.2+0.05*p3,0.2+0.2*p3,-0.07), 0.01, 0.04 );
res.xz = smin( res.xz, ear, 0.01 );
}
// mouth
{
d = sdEllipsoid( h-vec3(0.0,0.15+4.0*hq.x*hq.x,0.15), vec3(0.1,0.04,0.2) );
res.w = 0.3+0.7*clamp( d*150.0,0.0,1.0);
res.x = smax( res.x, -d, 0.03 );
}
// legs
{
float t6 = cos(6.2831*(atime*0.5+0.25));
float ccc = cos(1.57*t6*sign(r.x));
float sss = sin(1.57*t6*sign(r.x));
vec3 base = vec3(0.12,-0.07,-0.1); base.y -= 0.1/sy;
vec2 legs = sdStick( sq, base, base + vec3(0.2,-ccc,sss)*0.2, 0.04, 0.07 );
res.xz = smin( res.xz, legs, 0.07 );
}
// eye
{
float blink = pow(0.5+0.5*sin(2.1*iTime),20.0);
float eyeball = sdSphere(hq-vec3(0.08,0.27,0.06),0.065+0.02*blink);
res.x = smin( res.x, eyeball, 0.03 );
vec3 cq = hq-vec3(0.1,0.34,0.08);
cq.xy = mat2x2(0.8,0.6,-0.6,0.8)*cq.xy;
d = sdEllipsoid( cq, vec3(0.06,0.03,0.03) );
res.x = smin( res.x, d, 0.03 );
float eo = 1.0-0.5*smoothstep(0.01,0.04,length((hq.xy-vec2(0.095,0.285))*vec2(1.0,1.1)));
res = opU( res, vec4(sdSphere(hq-vec3(0.08,0.28,0.08),0.060),3.0,0.0,eo));
res = opU( res, vec4(sdSphere(hq-vec3(0.075,0.28,0.102),0.0395),4.0,0.0,1.0));
}
}
// ground
float fh = -0.1 - 0.05*(sin(pos.x*2.0)+sin(pos.z*2.0));
float t5f = fract(atime+0.05);
float t5i = floor(atime+0.05);
float bt4 = abs(fract(t5i*0.5)-0.5)/0.5;
vec2 bcen = vec2( 0.5*(-1.0+2.0*bt4),t5i+pow(t5f,0.7)-1.0 );
float k = length(pos.xz-bcen);
float tt = t5f*15.0-6.2831 - k*3.0;
fh -= 0.1*exp(-k*k)*sin(tt)*exp(-max(tt,0.0)/2.0)*smoothstep(0.0,0.01,t5f);
float d = pos.y - fh;
// bubbles
{
vec3 vp = vec3( mod(abs(pos.x),3.0)-1.5,pos.y,mod(pos.z+1.5,3.0)-1.5);
vec2 id = vec2( floor(pos.x/3.0), floor((pos.z+1.5)/3.0) );
float fid = id.x*11.1 + id.y*31.7;
float fy = fract(fid*1.312+atime*0.1);
float y = -1.0+4.0*fy;
vec3 rad = vec3(0.7,1.0+0.5*sin(fid),0.7);
rad -= 0.1*(sin(pos.x*3.0)+sin(pos.y*4.0)+sin(pos.z*5.0));
float siz = 4.0*fy*(1.0-fy);
float d2 = sdEllipsoid( vp-vec3(0.5,y,0.0), siz*rad );
d2 -= 0.03*smoothstep(-1.0,1.0,sin(18.0*pos.x)+sin(18.0*pos.y)+sin(18.0*pos.z));
d2 *= 0.6;
d2 = min(d2,2.0);
d = smin( d, d2, 0.32 );
if( d<res.x ) { res = vec4(d,1.0,0.0,1.0); hsha=sqrt(siz); }
}
// candy
{
float fs = 5.0;
vec3 qos = fs*vec3(pos.x, pos.y-fh, pos.z );
vec2 id = vec2( floor(qos.x+0.5), floor(qos.z+0.5) );
vec3 vp = vec3( fract(qos.x+0.5)-0.5,qos.y,fract(qos.z+0.5)-0.5);
vp.xz += 0.1*cos( id.x*130.143 + id.y*120.372 + vec2(0.0,2.0) );
float den = sin(id.x*0.1+sin(id.y*0.091))+sin(id.y*0.1);
float fid = id.x*0.143 + id.y*0.372;
float ra = smoothstep(0.0,0.1,den*0.1+fract(fid)-0.95);
d = sdSphere( vp, 0.35*ra )/fs;
if( d<res.x ) res = vec4(d,5.0,qos.y,1.0);
}
return res;
}
vec4 raycast( in vec3 ro, in vec3 rd, float time )
{
vec4 res = vec4(-1.0,-1.0,0.0,1.0);
float tmin = 0.5;
float tmax = 20.0;
#if 1
// raytrace bounding plane
float tp = (3.5-ro.y)/rd.y;
if( tp>0.0 ) tmax = min( tmax, tp );
#endif
// raymarch scene
float t = tmin;
for( int i=0; i<256 && t<tmax; i++ )
{
vec4 h = map( ro+rd*t, time );
if( abs(h.x)<(0.0005*t) )
{
res = vec4(t,h.yzw);
break;
}
t += h.x;
}
return res;
}
// http://iquilezles.org/www/articles/rmshadows/rmshadows.htm
float calcSoftshadow( in vec3 ro, in vec3 rd, float time )
{
float res = 1.0;
float tmax = 12.0;
#if 1
float tp = (3.5-ro.y)/rd.y; // raytrace bounding plane
if( tp>0.0 ) tmax = min( tmax, tp );
#endif
float t = 0.02;
for( int i=0; i<50; i++ )
{
float h = map( ro + rd*t, time ).x;
res = min( res, mix(1.0,16.0*h/t, hsha) );
t += clamp( h, 0.05, 0.40 );
if( res<0.005 || t>tmax ) break;
}
return clamp( res, 0.0, 1.0 );
}
// http://iquilezles.org/www/articles/normalsSDF/normalsSDF.htm
vec3 calcNormal( in vec3 pos, float time )
{
#if 0
vec2 e = vec2(1.0,-1.0)*0.5773*0.001;
return normalize( e.xyy*map( pos + e.xyy, time ).x +
e.yyx*map( pos + e.yyx, time ).x +
e.yxy*map( pos + e.yxy, time ).x +
e.xxx*map( pos + e.xxx, time ).x );
#else
// inspired by tdhooper and klems - a way to prevent the compiler from inlining map() 4 times
vec3 n = vec3(0.0);
for( int i=ZERO; i<4; i++ )
{
vec3 e = 0.5773*(2.0*vec3((((i+3)>>1)&1),((i>>1)&1),(i&1))-1.0);
n += e*map(pos+0.001*e,time).x;
}
return normalize(n);
#endif
}
float calcOcclusion( in vec3 pos, in vec3 nor, float time )
{
float occ = 0.0;
float sca = 1.0;
for( int i=ZERO; i<5; i++ )
{
float h = 0.01 + 0.11*float(i)/4.0;
vec3 opos = pos + h*nor;
float d = map( opos, time ).x;
occ += (h-d)*sca;
sca *= 0.95;
}
return clamp( 1.0 - 2.0*occ, 0.0, 1.0 );
}
vec3 render( in vec3 ro, in vec3 rd, float time )
{
// sky dome
vec3 col = vec3(0.5, 0.8, 0.9) - max(rd.y,0.0)*0.5;
// sky clouds
vec2 uv = 1.5*rd.xz/rd.y;
float cl = 1.0*(sin(uv.x)+sin(uv.y)); uv *= mat2(0.8,0.6,-0.6,0.8)*2.1;
cl += 0.5*(sin(uv.x)+sin(uv.y));
col += 0.1*(-1.0+2.0*smoothstep(-0.1,0.1,cl-0.4));
// sky horizon
col = mix( col, vec3(0.5, 0.7, .9), exp(-10.0*max(rd.y,0.0)) );
// scene geometry
vec4 res = raycast(ro,rd, time);
if( res.y>-0.5 )
{
float t = res.x;
vec3 pos = ro + t*rd;
vec3 nor = calcNormal( pos, time );
vec3 ref = reflect( rd, nor );
float focc = res.w;
// material
col = vec3(0.2);
float ks = 1.0;
if( res.y>4.5 ) // candy
{
col = vec3(0.14,0.048,0.0);
vec2 id = floor(5.0*pos.xz+0.5);
col += 0.036*cos((id.x*11.1+id.y*37.341) + vec3(0.0,1.0,2.0) );
col = max(col,0.0);
focc = clamp(4.0*res.z,0.0,1.0);
}
else if( res.y>3.5 ) // eyeball
{
col = vec3(0.0);
}
else if( res.y>2.5 ) // iris
{
col = vec3(0.4);
}
else if( res.y>1.5 ) // body
{
col = mix(vec3(0.144,0.09,0.0036),vec3(0.36,0.1,0.04),res.z*res.z);
col = mix(col,vec3(0.14,0.09,0.06)*2.0, (1.0-res.z)*smoothstep(-0.15, 0.15, -href));
}
else // terrain
{
// base green
col = vec3(0.05,0.09,0.02);
float f = 0.2*(-1.0+2.0*smoothstep(-0.2,0.2,sin(18.0*pos.x)+sin(18.0*pos.y)+sin(18.0*pos.z)));
col += f*vec3(0.06,0.06,0.02);
ks = 0.5 + pos.y*0.15;
// footprints
vec2 mp = vec2(pos.x-0.5*(mod(floor(pos.z+0.5),2.0)*2.0-1.0), fract(pos.z+0.5)-0.5 );
float mark = 1.0-smoothstep(0.1, 0.5, length(mp));
mark *= smoothstep(0.0, 0.1, floor(time) - floor(pos.z+0.5) );
col *= mix( vec3(1.0), vec3(0.5,0.5,0.4), mark );
ks *= 1.0-0.5*mark;
}
// lighting (sun, sky, bounce, back, sss)
float occ = calcOcclusion( pos, nor, time )*focc;
float fre = clamp(1.0+dot(nor,rd),0.0,1.0);
vec3 sun_lig = normalize( vec3(0.6, 0.35, 0.5) );
float sun_dif = clamp(dot( nor, sun_lig ), 0.0, 1.0 );
vec3 sun_hal = normalize( sun_lig-rd );
float sun_sha = calcSoftshadow( pos, sun_lig, time );
float sun_spe = ks*pow(clamp(dot(nor,sun_hal),0.0,1.0),8.0)*sun_dif*(0.04+0.96*pow(clamp(1.0+dot(sun_hal,rd),0.0,1.0),5.0));
float sky_dif = sqrt(clamp( 0.5+0.5*nor.y, 0.0, 1.0 ));
float sky_spe = ks*smoothstep( 0.0, 0.5, ref.y )*(0.04+0.96*pow(fre,4.0));
float bou_dif = sqrt(clamp( 0.1-0.9*nor.y, 0.0, 1.0 ))*clamp(1.0-0.1*pos.y,0.0,1.0);
float bac_dif = clamp(0.1+0.9*dot( nor, normalize(vec3(-sun_lig.x,0.0,-sun_lig.z))), 0.0, 1.0 );
float sss_dif = fre*sky_dif*(0.25+0.75*sun_dif*sun_sha);
vec3 lin = vec3(0.0);
lin += sun_dif*vec3(8.10,6.00,4.20)*vec3(sun_sha,sun_sha*sun_sha*0.5+0.5*sun_sha,sun_sha*sun_sha);
lin += sky_dif*vec3(0.50,0.70,1.00)*occ;
lin += bou_dif*vec3(0.20,0.70,0.10)*occ;
lin += bac_dif*vec3(0.45,0.35,0.25)*occ;
lin += sss_dif*vec3(3.25,2.75,2.50)*occ;
col = col*lin;
col += sun_spe*vec3(9.90,8.10,6.30)*sun_sha;
col += sky_spe*vec3(0.20,0.30,0.65)*occ*occ;
col = pow(col,vec3(0.8,0.9,1.0) );
// fog
col = mix( col, vec3(0.5,0.7,0.9), 1.0-exp( -0.0001*t*t*t ) );
}
return col;
}
mat3 setCamera( in vec3 ro, in vec3 ta, float cr )
{
vec3 cw = normalize(ta-ro);
vec3 cp = vec3(sin(cr), cos(cr),0.0);
vec3 cu = normalize( cross(cw,cp) );
vec3 cv = ( cross(cu,cw) );
return mat3( cu, cv, cw );
}
//void mainImage( out vec4 fragColor, in vec2 fragCoord )
vec4 mainImage( vec2 fragCoord )
{
vec3 tot = vec3(0.0);
#if AA>1
for( int m=ZERO; m<AA; m++ )
for( int n=ZERO; n<AA; n++ )
{
// pixel coordinates
vec2 o = vec2(float(m),float(n)) / float(AA) - 0.5;
vec2 p = (-iResolution.xy + 2.0*(fragCoord+o))/iResolution.y;
// time coordinate (motion blurred, shutter=0.5)
float d = 0.5+0.5*sin(fragCoord.x*147.0)*sin(fragCoord.y*131.0);
float time = iTime - 0.5*(1.0/24.0)*(float(m*AA+n)+d)/float(AA*AA);
#else
vec2 p = (-iResolution.xy + 2.0*fragCoord)/iResolution.y;
float time = iTime;
#endif
time += -2.6;
time *= 0.9;
// camera
float cl = sin(0.5*time);
float an = 1.57 + 0.7*sin(0.15*time);
vec3 ta = vec3( 0.0, 0.65, -0.6+time*1.0 - 0.4*cl);
vec3 ro = ta + vec3( 1.3*cos(an), -0.250, 1.3*sin(an) );
float ti = fract(time-0.15);
ti = 4.0*ti*(1.0-ti);
ta.y += 0.15*ti*ti*(3.0-2.0*ti)*smoothstep(0.4,0.9,cl);
// camera bounce
float t4 = abs(fract(time*0.5)-0.5)/0.5;
float bou = -1.0 + 2.0*t4;
ro += 0.06*sin(time*12.0+vec3(0.0,2.0,4.0))*smoothstep( 0.85, 1.0, abs(bou) );
// camera-to-world rotation
mat3 ca = setCamera( ro, ta, 0.0 );
// ray direction
vec3 rd = ca * normalize( vec3(p,1.8) );
// render
vec3 col = render( ro, rd, time );
// color grading
col = col*vec3(1.11,0.89,0.79);
// compress
col = 1.35*col/(1.0+col);
// gamma
col = pow( col, vec3(0.4545) );
tot += col;
#if AA>1
}
tot /= float(AA*AA);
#endif
// s-surve
tot = clamp(tot,0.0,1.0);
tot = tot*tot*(3.0-2.0*tot);
// vignetting
vec2 q = fragCoord/iResolution.xy;
tot *= 0.5 + 0.5*pow(16.0*q.x*q.y*(1.0-q.x)*(1.0-q.y),0.25);
// output
//fragColor = vec4( tot, 1.0 );
return vec4( tot, 1.0 );
}
//*********************************************************
// END Ray Marching
//*********************************************************
void main() {
vec4 c = color;
vec4 txt = texture(tex, uv);
c = txt * c;
vec2 uv1 = uv * iResolution;
vec4 col_ray = mainImage(uv1);
// use this to mix the chessboart texture with the ray marching
//frag_color = clamp(c*iMouse.y/512.0,0.0,1.0) * col_ray ;
frag_color = c*0.00001 + col_ray ;
}
#pragma sokol @end
#pragma sokol @program rt_puppy vs_p fs_p