203 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Go
		
	
	
			
		
		
	
	
			203 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Go
		
	
	
| // Copyright (c) 2019 Alexander Medvednikov. All rights reserved.
 | |
| // Use of this source code is governed by an MIT license
 | |
| // that can be found in the LICENSE file.
 | |
| 
 | |
| // This implementation is derived from the golang implementation
 | |
| // which itself is derived in part from the reference
 | |
| // ANSI C implementation, which carries the following notice:
 | |
| //
 | |
| //	rijndael-alg-fst.c
 | |
| //
 | |
| //	@version 3.0 (December 2000)
 | |
| //
 | |
| //	Optimised ANSI C code for the Rijndael cipher (now AES)
 | |
| //
 | |
| //	@author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
 | |
| //	@author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
 | |
| //	@author Paulo Barreto <paulo.barreto@Terra.com.br>
 | |
| //
 | |
| //	This code is hereby placed in the public domain.
 | |
| //
 | |
| //	THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
 | |
| //	OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 | |
| //	WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
| //	ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
 | |
| //	LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
| //	CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
| //	SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 | |
| //	BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 | |
| //	WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
 | |
| //	OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 | |
| //	EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| // See FIPS 197 for specification, and see Daemen and Rijmen's Rijndael submission
 | |
| // for implementation details.
 | |
| //	https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
 | |
| //	https://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
 | |
| 
 | |
| module aes
 | |
| 
 | |
| import (
 | |
| 	encoding.binary
 | |
| )
 | |
| 
 | |
| // Encrypt one block from src into dst, using the expanded key xk.
 | |
| fn encrypt_block_generic(xk []u32, dst, src []byte) {
 | |
| 	mut _ := src[15] // early bounds check
 | |
| 	mut s0 := binary.big_endian_u32(src.left(4))
 | |
| 	mut s1 := binary.big_endian_u32(src.slice(4, 8))
 | |
| 	mut s2 := binary.big_endian_u32(src.slice(8, 12))
 | |
| 	mut s3 := binary.big_endian_u32(src.slice(12, 16))
 | |
| 
 | |
| 	// First round just XORs input with key.
 | |
| 	s0 ^= xk[0]
 | |
| 	s1 ^= xk[1]
 | |
| 	s2 ^= xk[2]
 | |
| 	s3 ^= xk[3]
 | |
| 
 | |
| 	// Middle rounds shuffle using tables.
 | |
| 	// Number of rounds is set by length of expanded key.
 | |
| 	nr := xk.len/4 - 2 // - 2: one above, one more below
 | |
| 	mut k := 4
 | |
| 	mut t0 := u32(0)
 | |
| 	mut t1 := u32(0)
 | |
| 	mut t2 := u32(0)
 | |
| 	mut t3 := u32(0)
 | |
| 	for r := 0; r < nr; r++ {
 | |
| 		t0 = xk[u32(k+0)] ^ u32(Te0[u8(s0>>u32(24))]) ^ u32(Te1[u8(s1>>u32(16))]) ^ u32(Te2[u8(s2>>u32(8))]) ^ u32(Te3[u8(s3)])
 | |
| 		t1 = xk[u32(k+1)] ^ u32(Te0[u8(s1>>u32(24))]) ^ u32(Te1[u8(s2>>u32(16))]) ^ u32(Te2[u8(s3>>u32(8))]) ^ u32(Te3[u8(s0)])
 | |
| 		t2 = xk[u32(k+2)] ^ u32(Te0[u8(s2>>u32(24))]) ^ u32(Te1[u8(s3>>u32(16))]) ^ u32(Te2[u8(s0>>u32(8))]) ^ u32(Te3[u8(s1)])
 | |
| 		t3 = xk[u32(k+3)] ^ u32(Te0[u8(s3>>u32(24))]) ^ u32(Te1[u8(s0>>u32(16))]) ^ u32(Te2[u8(s1>>u32(8))]) ^ u32(Te3[u8(s2)])
 | |
| 		k += 4
 | |
| 		s0 = t0
 | |
| 		s1 = t1
 | |
| 		s2 = t2
 | |
| 		s3 = t3
 | |
| 	}
 | |
| 
 | |
| 	// Last round uses s-box directly and XORs to produce output.
 | |
| 	s0 = u32(u32(SBox0[t0>>u32(24)])<<u32(24)) | u32(u32(SBox0[u32(t1>>u32(16))&u32(0xff)])<<u32(16)) | u32(u32(SBox0[u32(t2>>u32(8))&u32(0xff)])<<u32(8)) | u32(SBox0[t3&u32(0xff)])
 | |
| 	s1 = u32(u32(SBox0[t1>>u32(24)])<<u32(24)) | u32(u32(SBox0[u32(t2>>u32(16))&u32(0xff)])<<u32(16)) | u32(u32(SBox0[u32(t3>>u32(8))&u32(0xff)])<<u32(8)) | u32(SBox0[t0&u32(0xff)])
 | |
| 	s2 = u32(u32(SBox0[t2>>u32(24)])<<u32(24)) | u32(u32(SBox0[u32(t3>>u32(16))&u32(0xff)])<<u32(16)) | u32(u32(SBox0[u32(t0>>u32(8))&u32(0xff)])<<u32(8)) | u32(SBox0[t1&u32(0xff)])
 | |
| 	s3 = u32(u32(SBox0[t3>>u32(24)])<<u32(24)) | u32(u32(SBox0[u32(t0>>u32(16))&u32(0xff)])<<u32(16)) | u32(u32(SBox0[u32(t1>>u32(8))&u32(0xff)])<<u32(8)) | u32(SBox0[t2&u32(0xff)])
 | |
| 
 | |
| 	s0 ^= xk[k+0]
 | |
| 	s1 ^= xk[k+1]
 | |
| 	s2 ^= xk[k+2]
 | |
| 	s3 ^= xk[k+3]
 | |
| 
 | |
| 	_ = dst[15] // early bounds check
 | |
| 	binary.big_endian_put_u32(mut dst.left(4), s0)
 | |
| 	binary.big_endian_put_u32(mut dst.slice(4, 8), s1)
 | |
| 	binary.big_endian_put_u32(mut dst.slice(8, 12), s2)
 | |
| 	binary.big_endian_put_u32(mut dst.slice(12, 16), s3)
 | |
| }
 | |
| 
 | |
| // Decrypt one block from src into dst, using the expanded key xk.
 | |
| fn decrypt_block_generic(xk []u32, dst, src []byte) {
 | |
| 	mut _ := src[15] // early bounds check
 | |
| 	mut s0 := binary.big_endian_u32(src.left(4))
 | |
| 	mut s1 := binary.big_endian_u32(src.slice(4, 8))
 | |
| 	mut s2 := binary.big_endian_u32(src.slice(8, 12))
 | |
| 	mut s3 := binary.big_endian_u32(src.slice(12, 16))
 | |
| 
 | |
| 	// First round just XORs input with key.
 | |
| 	s0 ^= xk[0]
 | |
| 	s1 ^= xk[1]
 | |
| 	s2 ^= xk[2]
 | |
| 	s3 ^= xk[3]
 | |
| 
 | |
| 	// Middle rounds shuffle using tables.
 | |
| 	// Number of rounds is set by length of expanded key.
 | |
| 	nr := xk.len/4 - 2 // - 2: one above, one more below
 | |
| 	mut k := 4
 | |
| 	mut t0 := u32(0)
 | |
| 	mut t1 := u32(0)
 | |
| 	mut t2 := u32(0)
 | |
| 	mut t3 := u32(0)
 | |
| 	for r := 0; r < nr; r++ {
 | |
| 		// println('### 1')
 | |
| 		t0 = xk[u32(k+0)] ^ u32(Td0[u8(s0>>u32(24))]) ^ u32(Td1[u8(s3>>u32(16))]) ^ u32(Td2[u8(s2>>u32(8))]) ^ u32(Td3[u8(s1)])
 | |
| 		t1 = xk[u32(k+1)] ^ u32(Td0[u8(s1>>u32(24))]) ^ u32(Td1[u8(s0>>u32(16))]) ^ u32(Td2[u8(s3>>u32(8))]) ^ u32(Td3[u8(s2)])
 | |
| 		t2 = xk[u32(k+2)] ^ u32(Td0[u8(s2>>u32(24))]) ^ u32(Td1[u8(s1>>u32(16))]) ^ u32(Td2[u8(s0>>u32(8))]) ^ u32(Td3[u8(s3)])
 | |
| 		t3 = xk[u32(k+3)] ^ u32(Td0[u8(s3>>u32(24))]) ^ u32(Td1[u8(s2>>u32(16))]) ^ u32(Td2[u8(s1>>u32(8))]) ^ u32(Td3[u8(s0)])
 | |
| 		// println('### 1 end')
 | |
| 		k += 4
 | |
| 		s0 = t0
 | |
| 		s1 = t1
 | |
| 		s2 = t2
 | |
| 		s3 = t3
 | |
| 	}
 | |
| 
 | |
| 	// Last round uses s-box directly and XORs to produce output.
 | |
| 	s0 = u32(u32(SBox1[t0>>u32(24)])<<u32(24)) | u32(u32(SBox1[u32(t3>>u32(16))&u32(0xff)])<<u32(16)) | u32(u32(SBox1[u32(t2>>u32(8))&u32(0xff)])<<u32(8)) | u32(SBox1[t1&u32(0xff)])
 | |
| 	s1 = u32(u32(SBox1[t1>>u32(24)])<<u32(24)) | u32(u32(SBox1[u32(t0>>u32(16))&u32(0xff)])<<u32(16)) | u32(u32(SBox1[u32(t3>>u32(8))&u32(0xff)])<<u32(8)) | u32(SBox1[t2&u32(0xff)])
 | |
| 	s2 = u32(u32(SBox1[t2>>u32(24)])<<u32(24)) | u32(u32(SBox1[u32(t1>>u32(16))&u32(0xff)])<<u32(16)) | u32(u32(SBox1[u32(t0>>u32(8))&u32(0xff)])<<u32(8)) | u32(SBox1[t3&u32(0xff)])
 | |
| 	s3 = u32(u32(SBox1[t3>>u32(24)])<<u32(24)) | u32(u32(SBox1[u32(t2>>u32(16))&u32(0xff)])<<u32(16)) | u32(u32(SBox1[u32(t1>>u32(8))&u32(0xff)])<<u32(8)) | u32(SBox1[t0&u32(0xff)])
 | |
| 
 | |
| 	s0 ^= xk[k+0]
 | |
| 	s1 ^= xk[k+1]
 | |
| 	s2 ^= xk[k+2]
 | |
| 	s3 ^= xk[k+3]
 | |
| 
 | |
| 	_ = dst[15] // early bounds check
 | |
| 	binary.big_endian_put_u32(mut dst.left(4), s0)
 | |
| 	binary.big_endian_put_u32(mut dst.slice(4, 8), s1)
 | |
| 	binary.big_endian_put_u32(mut dst.slice(8, 12), s2)
 | |
| 	binary.big_endian_put_u32(mut dst.slice(12, 16), s3)
 | |
| }
 | |
| 
 | |
| // Apply SBox0 to each byte in w.
 | |
| fn subw(w u32) u32 {
 | |
| 	return u32(u32(SBox0[w>>u32(24)])<<u32(24)) |
 | |
| 		u32(u32(SBox0[u32(w>>u32(16))&u32(0xff)])<<u32(16)) |
 | |
| 		u32(u32(SBox0[u32(w>>u32(8))&u32(0xff)])<<u32(8)) |
 | |
| 		u32(SBox0[w&u32(0xff)])
 | |
| }
 | |
| 
 | |
| // Rotate
 | |
| fn rotw(w u32) u32 { return u32(w<<u32(8)) | u32(w>>u32(24)) }
 | |
| 
 | |
| // Key expansion algorithm. See FIPS-197, Figure 11.
 | |
| // Their rcon[i] is our powx[i-1] << 24.
 | |
| fn expand_key_generic(key []byte, enc mut []u32, dec mut []u32) {
 | |
| 	// Encryption key setup.
 | |
| 	mut i := 0
 | |
| 	nk := key.len / 4
 | |
| 	for i = 0; i < nk; i++ {
 | |
| 		if 4*i >= key.len {
 | |
| 			break
 | |
| 		}
 | |
| 		enc[i] = binary.big_endian_u32(key.right(4*i))
 | |
| 	}
 | |
| 	
 | |
| 	for i < enc.len {
 | |
| 		mut t := enc[i-1]
 | |
| 		if i%nk == 0 {
 | |
| 			t = subw(rotw(t)) ^ u32(u32(PowX[i/nk-1]) << u32(24))
 | |
| 		} else if nk > 6 && i%nk == 4 {
 | |
| 			t = subw(t)
 | |
| 		}
 | |
| 		enc[i] = enc[i-nk] ^ t
 | |
| 		i++
 | |
| 	}
 | |
| 
 | |
| 	// Derive decryption key from encryption key.
 | |
| 	// Reverse the 4-word round key sets from enc to produce dec.
 | |
| 	// All sets but the first and last get the MixColumn transform applied.
 | |
| 	if dec.len == 0 {
 | |
| 		return
 | |
| 	}
 | |
| 	n := enc.len
 | |
| 	for i = 0; i < n; i += 4 {
 | |
| 		ei := n - i - 4
 | |
| 		for j := 0; j < 4; j++ {
 | |
| 			mut x := enc[ei+j]
 | |
| 			if i > 0 && i+4 < n {
 | |
| 				x = u32(Td0[SBox0[u32(x>>u32(24))]]) ^ u32(Td1[SBox0[u32(x>>u32(16))&u32(0xff)]]) ^ u32(Td2[SBox0[u32(x>>u32(8))&u32(0xff)]]) ^ u32(Td3[SBox0[x&u32(0xff)]])
 | |
| 			}
 | |
| 			dec[i+j] = x
 | |
| 		}
 | |
| 	}
 | |
| }
 |