v/vlib/crypto/ed25519/internal/edwards25519/scalarmult_test.v

186 lines
4.2 KiB
V

module edwards25519
const (
dalek_scalar = Scalar{[u8(219), 106, 114, 9, 174, 249, 155, 89, 69, 203, 201, 93, 92, 116,
234, 187, 78, 115, 103, 172, 182, 98, 62, 103, 187, 136, 13, 100, 248, 110, 12, 4]!}
dsc_basepoint = [u8(0xf4), 0xef, 0x7c, 0xa, 0x34, 0x55, 0x7b, 0x9f, 0x72, 0x3b, 0xb6, 0x1e,
0xf9, 0x46, 0x9, 0x91, 0x1c, 0xb9, 0xc0, 0x6c, 0x17, 0x28, 0x2d, 0x8b, 0x43, 0x2b, 0x5,
0x18, 0x6a, 0x54, 0x3e, 0x48]
)
fn dalek_scalar_basepoint() Point {
mut p := Point{}
p.set_bytes(edwards25519.dsc_basepoint) or { panic(err) }
return p
}
fn test_scalar_mult_small_scalars() {
mut z := Scalar{}
mut p := Point{}
mut b := new_generator_point()
mut i := new_identity_point()
p.scalar_mult(mut z, b)
assert i.equal(p) == 1
assert check_on_curve(p) == true
z = Scalar{[u8(1), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0]!}
p.scalar_mult(mut z, b)
assert b.equal(p) == 1
assert check_on_curve(p) == true
}
fn test_scalar_mult_vs_dalek() {
mut p := Point{}
mut b := new_generator_point()
mut dsc := edwards25519.dalek_scalar
p.scalar_mult(mut dsc, b)
mut ds := dalek_scalar_basepoint()
assert ds.equal(p) == 1
assert check_on_curve(p) == true
}
fn test_scalar_base_mult_vs_dalek() {
mut p := Point{}
mut dsc := edwards25519.dalek_scalar
p.scalar_base_mult(mut dsc)
mut ds := dalek_scalar_basepoint()
assert ds.equal(p) == 1
assert check_on_curve(p)
}
fn test_vartime_double_basemult_vs_dalek() {
mut p := Point{}
mut z := Scalar{}
b := new_generator_point()
p.vartime_double_scalar_base_mult(edwards25519.dalek_scalar, b, z)
mut ds := dalek_scalar_basepoint()
assert ds.equal(p) == 1
assert check_on_curve(p)
p.vartime_double_scalar_base_mult(z, b, edwards25519.dalek_scalar)
assert ds.equal(p) == 1
assert check_on_curve(p)
}
fn test_scalar_mult_distributes_over_add() {
mut x := generate_scalar(100) or { panic(err) }
mut y := generate_scalar(100) or { panic(err) }
mut z := Scalar{}
z.add(x, y)
mut p := Point{}
mut q := Point{}
mut r := Point{}
mut check := Point{}
mut b := new_generator_point()
p.scalar_mult(mut x, b)
q.scalar_mult(mut y, b)
r.scalar_mult(mut z, b)
check.add(p, q)
assert check_on_curve(p, q, r, check) == true
assert check.equal(r) == 1
}
fn test_scalarmult_non_identity_point() ? {
// Check whether p.ScalarMult and q.ScalaBaseMult give the same,
// when p and q are originally set to the base point.
mut x := generate_scalar(5000)?
mut p := Point{}
mut q := Point{}
mut b := new_generator_point()
p.set(b)
q.set(b)
p.scalar_mult(mut x, b)
q.scalar_base_mult(mut x)
assert check_on_curve(p, q) == true
assert p.equal(q) == 1
}
fn test_basepoint_table_generation() {
// The basepoint table is 32 affineLookupTables,
// corresponding to (16^2i)*B for table i.
bptable := basepoint_table()
b := new_generator_point()
mut tmp1 := ProjectiveP1{}
mut tmp2 := ProjectiveP2{}
mut tmp3 := Point{}
tmp3.set(b)
mut table := []AffineLookupTable{len: 32}
for i := 0; i < 32; i++ {
// Build the table
table[i].from_p3(tmp3)
// Assert equality with the hardcoded one
assert table[i] == bptable[i]
// Set p = (16^2)*p = 256*p = 2^8*p
tmp2.from_p3(tmp3)
for j := 0; j < 7; j++ {
tmp1.double(tmp2)
tmp2.from_p1(tmp1)
}
tmp1.double(tmp2)
tmp3.from_p1(tmp1)
assert check_on_curve(tmp3) == true
}
}
fn test_scalar_mult_matches_base_mult() {
mut x := generate_scalar(100) or { panic(err) }
b := new_generator_point()
mut p := Point{}
mut q := Point{}
p.scalar_mult(mut x, b)
q.scalar_base_mult(mut x)
assert check_on_curve(p, q) == true
assert p.equal(q) == 1
}
fn test_basepoint_naf_table_generation() {
mut table := NafLookupTable8{}
b := new_generator_point()
table.from_p3(b)
bnt := basepoint_naf_table()
assert table == bnt
}
fn test_vartime_double_scalar_base_mult() {
mut x := generate_scalar(100) or { panic(err) }
mut y := generate_scalar(100) or { panic(err) }
b := new_generator_point()
mut p := Point{}
mut q1 := Point{}
mut q2 := Point{}
mut check := Point{}
p.vartime_double_scalar_base_mult(x, b, y)
q1.scalar_base_mult(mut x)
q2.scalar_base_mult(mut y)
check.add(q1, q2)
assert check_on_curve(p, check, q1, q2) == true
assert p.equal(check) == 1
}