340 lines
9.0 KiB
V
340 lines
9.0 KiB
V
module strconv
|
|
|
|
import math
|
|
|
|
fn (d Dec64) get_string_64(neg bool, i_n_digit int, i_pad_digit int) string {
|
|
mut n_digit := i_n_digit + 1
|
|
pad_digit := i_pad_digit + 1
|
|
mut out := d.m
|
|
mut d_exp := d.e
|
|
// mut out_len := decimal_len_64(out)
|
|
mut out_len := dec_digits(out)
|
|
out_len_original := out_len
|
|
|
|
mut fw_zeros := 0
|
|
if pad_digit > out_len {
|
|
fw_zeros = pad_digit - out_len
|
|
}
|
|
|
|
mut buf := []byte{len: (out_len + 6 + 1 + 1 + fw_zeros)} // sign + mant_len + . + e + e_sign + exp_len(2) + \0}
|
|
mut i := 0
|
|
|
|
if neg {
|
|
#buf.arr.arr[i.val] = '-'.charCodeAt()
|
|
i++
|
|
}
|
|
|
|
mut disp := 0
|
|
if out_len <= 1 {
|
|
disp = 1
|
|
}
|
|
|
|
// rounding last used digit
|
|
if n_digit < out_len {
|
|
// println("out:[$out]")
|
|
out += ten_pow_table_64[out_len - n_digit - 1] * 5 // round to up
|
|
out /= ten_pow_table_64[out_len - n_digit]
|
|
// println("out1:[$out] ${d.m / ten_pow_table_64[out_len - n_digit ]}")
|
|
if d.m / ten_pow_table_64[out_len - n_digit] < out {
|
|
d_exp++
|
|
n_digit++
|
|
}
|
|
|
|
// println("cmp: ${d.m/ten_pow_table_64[out_len - n_digit ]} ${out/ten_pow_table_64[out_len - n_digit ]}")
|
|
|
|
out_len = n_digit
|
|
// println("orig: ${out_len_original} new len: ${out_len} out:[$out]")
|
|
}
|
|
|
|
y := i + out_len
|
|
mut x := 0
|
|
for x < (out_len - disp - 1) {
|
|
#buf.arr.arr[y.val - x.val].val = '0'.charCodeAt() + Number(out.valueOf() % 10n)
|
|
|
|
out /= 10
|
|
i++
|
|
x++
|
|
}
|
|
|
|
// no decimal digits needed, end here
|
|
if i_n_digit == 0 {
|
|
res := ''
|
|
#buf.arr.arr.forEach((it) => it.val == 0 ? res.str : res.str += String.fromCharCode(it.val))
|
|
|
|
return res
|
|
}
|
|
|
|
if out_len >= 1 {
|
|
buf[y - x] = `.`
|
|
x++
|
|
i++
|
|
}
|
|
|
|
if y - x >= 0 {
|
|
#buf.arr.arr[y.val - x.val].val = '0'.charCodeAt() + Number(out.valueOf() % 10n)
|
|
i++
|
|
}
|
|
|
|
for fw_zeros > 0 {
|
|
#buf.arr.arr[i.val].val = '0'.charCodeAt()
|
|
i++
|
|
fw_zeros--
|
|
}
|
|
|
|
#buf.arr.arr[i.val].val = 'e'.charCodeAt()
|
|
i++
|
|
|
|
mut exp := d_exp + out_len_original - 1
|
|
if exp < 0 {
|
|
#buf.arr.arr[i.val].val = '-'.charCodeAt()
|
|
i++
|
|
exp = -exp
|
|
} else {
|
|
#buf.arr.arr[i.val].val = '+'.charCodeAt()
|
|
i++
|
|
}
|
|
|
|
// Always print at least two digits to match strconv's formatting.
|
|
d2 := exp % 10
|
|
exp /= 10
|
|
d1 := exp % 10
|
|
_ := d1
|
|
_ := d2
|
|
d0 := exp / 10
|
|
if d0 > 0 {
|
|
#buf.arr.arr[i].val = '0'.charCodeAt() + d0.val
|
|
i++
|
|
}
|
|
#buf.arr.arr[i].val = '0'.charCodeAt() + d1.val
|
|
i++
|
|
#buf.arr.arr[i].val = '0' + d2.val
|
|
i++
|
|
#buf.arr.arr[i].val = 0
|
|
|
|
res := ''
|
|
#buf.arr.arr.forEach((it) => it.val == 0 ? res.str : res.str += String.fromCharCode(it.val))
|
|
|
|
return res
|
|
}
|
|
|
|
fn f64_to_decimal_exact_int(i_mant u64, exp u64) (Dec64, bool) {
|
|
mut d := Dec64{}
|
|
e := exp - bias64
|
|
if e > mantbits64 {
|
|
return d, false
|
|
}
|
|
shift := mantbits64 - e
|
|
mant := i_mant | u64(0x0010_0000_0000_0000) // implicit 1
|
|
// mant := i_mant | (1 << mantbits64) // implicit 1
|
|
d.m = mant >> shift
|
|
if (d.m << shift) != mant {
|
|
return d, false
|
|
}
|
|
|
|
for (d.m % 10) == 0 {
|
|
d.m /= 10
|
|
d.e++
|
|
}
|
|
return d, true
|
|
}
|
|
|
|
fn f64_to_decimal(mant u64, exp u64) Dec64 {
|
|
mut e2 := 0
|
|
mut m2 := u64(0)
|
|
if exp == 0 {
|
|
// We subtract 2 so that the bounds computation has
|
|
// 2 additional bits.
|
|
e2 = 1 - bias64 - int(mantbits64) - 2
|
|
m2 = mant
|
|
} else {
|
|
e2 = int(exp) - bias64 - int(mantbits64) - 2
|
|
m2 = (u64(1) << mantbits64) | mant
|
|
}
|
|
even := (m2 & 1) == 0
|
|
accept_bounds := even
|
|
|
|
// Step 2: Determine the interval of valid decimal representations.
|
|
mv := u64(4 * m2)
|
|
mm_shift := bool_to_u64(mant != 0 || exp <= 1)
|
|
|
|
// Step 3: Convert to a decimal power base uing 128-bit arithmetic.
|
|
mut vr := u64(0)
|
|
mut vp := u64(0)
|
|
mut vm := u64(0)
|
|
mut e10 := 0
|
|
mut vm_is_trailing_zeros := false
|
|
mut vr_is_trailing_zeros := false
|
|
|
|
if e2 >= 0 {
|
|
// This expression is slightly faster than max(0, log10Pow2(e2) - 1).
|
|
q := log10_pow2(e2) - bool_to_u32(e2 > 3)
|
|
e10 = int(q)
|
|
k := pow5_inv_num_bits_64 + pow5_bits(int(q)) - 1
|
|
i := -e2 + int(q) + k
|
|
|
|
mul := pow5_inv_split_64[q]
|
|
vr = mul_shift_64(u64(4) * m2, mul, i)
|
|
vp = mul_shift_64(u64(4) * m2 + u64(2), mul, i)
|
|
vm = mul_shift_64(u64(4) * m2 - u64(1) - mm_shift, mul, i)
|
|
if q <= 21 {
|
|
// This should use q <= 22, but I think 21 is also safe.
|
|
// Smaller values may still be safe, but it's more
|
|
// difficult to reason about them. Only one of mp, mv,
|
|
// and mm can be a multiple of 5, if any.
|
|
if mv % 5 == 0 {
|
|
vr_is_trailing_zeros = multiple_of_power_of_five_64(mv, q)
|
|
} else if accept_bounds {
|
|
// Same as min(e2 + (^mm & 1), pow5Factor64(mm)) >= q
|
|
// <=> e2 + (^mm & 1) >= q && pow5Factor64(mm) >= q
|
|
// <=> true && pow5Factor64(mm) >= q, since e2 >= q.
|
|
vm_is_trailing_zeros = multiple_of_power_of_five_64(mv - 1 - mm_shift,
|
|
q)
|
|
} else if multiple_of_power_of_five_64(mv + 2, q) {
|
|
vp--
|
|
}
|
|
}
|
|
} else {
|
|
// This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
|
|
q := log10_pow5(-e2) - bool_to_u32(-e2 > 1)
|
|
e10 = int(q) + e2
|
|
i := -e2 - int(q)
|
|
k := pow5_bits(i) - pow5_num_bits_64
|
|
j := int(q) - k
|
|
mul := pow5_split_64[i]
|
|
vr = mul_shift_64(u64(4) * m2, mul, j)
|
|
vp = mul_shift_64(u64(4) * m2 + u64(2), mul, j)
|
|
vm = mul_shift_64(u64(4) * m2 - u64(1) - mm_shift, mul, j)
|
|
if q <= 1 {
|
|
// {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
|
|
// mv = 4 * m2, so it always has at least two trailing 0 bits.
|
|
vr_is_trailing_zeros = true
|
|
if accept_bounds {
|
|
// mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
|
|
vm_is_trailing_zeros = (mm_shift == 1)
|
|
} else {
|
|
// mp = mv + 2, so it always has at least one trailing 0 bit.
|
|
vp--
|
|
}
|
|
} else if q < 63 { // TODO(ulfjack/cespare): Use a tighter bound here.
|
|
// We need to compute min(ntz(mv), pow5Factor64(mv) - e2) >= q - 1
|
|
// <=> ntz(mv) >= q - 1 && pow5Factor64(mv) - e2 >= q - 1
|
|
// <=> ntz(mv) >= q - 1 (e2 is negative and -e2 >= q)
|
|
// <=> (mv & ((1 << (q - 1)) - 1)) == 0
|
|
// We also need to make sure that the left shift does not overflow.
|
|
vr_is_trailing_zeros = multiple_of_power_of_two_64(mv, q - 1)
|
|
}
|
|
}
|
|
|
|
// Step 4: Find the shortest decimal representation
|
|
// in the interval of valid representations.
|
|
mut removed := 0
|
|
mut last_removed_digit := u8(0)
|
|
mut out := u64(0)
|
|
// On average, we remove ~2 digits.
|
|
if vm_is_trailing_zeros || vr_is_trailing_zeros {
|
|
// General case, which happens rarely (~0.7%).
|
|
for {
|
|
vp_div_10 := vp / 10
|
|
vm_div_10 := vm / 10
|
|
if vp_div_10 <= vm_div_10 {
|
|
break
|
|
}
|
|
vm_mod_10 := vm % 10
|
|
vr_div_10 := vr / 10
|
|
vr_mod_10 := vr % 10
|
|
vm_is_trailing_zeros = vm_is_trailing_zeros && vm_mod_10 == 0
|
|
vr_is_trailing_zeros = vr_is_trailing_zeros && (last_removed_digit == 0)
|
|
last_removed_digit = u8(vr_mod_10)
|
|
vr = vr_div_10
|
|
vp = vp_div_10
|
|
vm = vm_div_10
|
|
removed++
|
|
}
|
|
if vm_is_trailing_zeros {
|
|
for {
|
|
vm_div_10 := vm / 10
|
|
vm_mod_10 := vm % 10
|
|
if vm_mod_10 != 0 {
|
|
break
|
|
}
|
|
vp_div_10 := vp / 10
|
|
vr_div_10 := vr / 10
|
|
vr_mod_10 := vr % 10
|
|
vr_is_trailing_zeros = vr_is_trailing_zeros && (last_removed_digit == 0)
|
|
last_removed_digit = u8(vr_mod_10)
|
|
vr = vr_div_10
|
|
vp = vp_div_10
|
|
vm = vm_div_10
|
|
removed++
|
|
}
|
|
}
|
|
if vr_is_trailing_zeros && (last_removed_digit == 5) && (vr % 2) == 0 {
|
|
// Round even if the exact number is .....50..0.
|
|
last_removed_digit = 4
|
|
}
|
|
out = vr
|
|
// We need to take vr + 1 if vr is outside bounds
|
|
// or we need to round up.
|
|
if (vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5 {
|
|
out++
|
|
}
|
|
} else {
|
|
// Specialized for the common case (~99.3%).
|
|
// Percentages below are relative to this.
|
|
mut round_up := false
|
|
for vp / 100 > vm / 100 {
|
|
// Optimization: remove two digits at a time (~86.2%).
|
|
round_up = (vr % 100) >= 50
|
|
vr /= 100
|
|
vp /= 100
|
|
vm /= 100
|
|
removed += 2
|
|
}
|
|
// Loop iterations below (approximately), without optimization above:
|
|
// 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
|
|
// Loop iterations below (approximately), with optimization above:
|
|
// 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
|
|
for vp / 10 > vm / 10 {
|
|
round_up = (vr % 10) >= 5
|
|
vr /= 10
|
|
vp /= 10
|
|
vm /= 10
|
|
removed++
|
|
}
|
|
// We need to take vr + 1 if vr is outside bounds
|
|
// or we need to round up.
|
|
out = vr + bool_to_u64(vr == vm || round_up)
|
|
}
|
|
|
|
return Dec64{
|
|
m: out
|
|
e: e10 + removed
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
// String Functions
|
|
//=============================================================================
|
|
|
|
// f64_to_str return a string in scientific notation with max n_digit after the dot
|
|
pub fn f64_to_str(f f64, n_digit int) string {
|
|
u := math.f64_bits(f)
|
|
neg := (u >> (mantbits64 + expbits64)) != 0
|
|
mant := u & ((u64(1) << mantbits64) - u64(1))
|
|
exp := (u >> mantbits64) & ((u64(1) << expbits64) - u64(1))
|
|
// println("s:${neg} mant:${mant} exp:${exp} float:${f} byte:${u1.u:016lx}")
|
|
|
|
// Exit early for easy cases.
|
|
if (exp == maxexp64) || (exp == 0 && mant == 0) {
|
|
return get_string_special(neg, exp == 0, mant == 0)
|
|
}
|
|
|
|
mut d, ok := f64_to_decimal_exact_int(mant, exp)
|
|
if !ok {
|
|
// println("to_decimal")
|
|
d = f64_to_decimal(mant, exp)
|
|
}
|
|
// println("${d.m} ${d.e}")
|
|
return d.get_string_64(neg, n_digit, 0)
|
|
}
|